Hi Jingsong,

I don't think it should follow SQL CAST semantics, because it is out of
SQL, it happens in connectors which converts users'/external's format into
SQL types.
I also doubt "timestampFormat" may not work in some cases, because the
timestamp format maybe various and mixed in a topic.

Best,
Jark

On Wed, 26 Feb 2020 at 22:20, Jingsong Li <jingsongl...@gmail.com> wrote:

> Thanks all for your discussion.
>
> Hi Dawid,
>
> +1 to apply the logic of parsing a SQL timestamp literal.
>
> I don't fully understand the matrix your list. Should this be the
> semantics of SQL cast?
> Do you mean this is implicit cast in JSON parser?
> I doubt that because these implicit casts are not support
> in LogicalTypeCasts. And it is not so good to understand when it occur
> silently.
>
> How about add "timestampFormat" property to JSON parser? Its default value
> is SQL timestamp literal format. And user can configure this.
>
> Best,
> Jingsong Lee
>
> On Wed, Feb 26, 2020 at 6:39 PM Jark Wu <imj...@gmail.com> wrote:
>
>> Hi Dawid,
>>
>> I agree with you. If we want to loosen the format constraint, the
>> important piece is the conversion matrix.
>>
>> The conversion matrix you listed makes sense to me. From my understanding,
>> there should be 6 combination.
>> We can add WITHOUT TIMEZONE => WITHOUT TIMEZONE and WITH TIMEZONE => WITH
>> TIMEZONE to make the matrix complete.
>> When the community reach an agreement on this, we should write it down on
>> the documentation and follow the matrix in all text-based formats.
>>
>> Regarding to the RFC 3339 compatibility mode switch, it also sounds good
>> to
>> me.
>>
>> Best,
>> Jark
>>
>> On Wed, 26 Feb 2020 at 17:44, Dawid Wysakowicz <dwysakow...@apache.org>
>> wrote:
>>
>> > Hi all,
>> >
>> > @NiYanchun Thank you for reporting this. Yes I think we could improve
>> the
>> > behaviour of the JSON format.
>> >
>> > @Jark First of all I do agree we could/should improve the
>> > "user-friendliness" of the JSON format (and unify the behavior across
>> text
>> > based formats). I am not sure though if it is as simple as just ignore
>> the
>> > time zone here.
>> >
>> > My suggestion would be rather to apply the logic of parsing a SQL
>> > timestamp literal (if the expected type is of
>> LogicalTypeFamily.TIMESTAMP),
>> > which would actually also derive the "stored" type of the timestamp
>> (either
>> > WITHOUT TIMEZONE or WITH TIMEZONE) and then apply a proper sql
>> conversion.
>> > Therefore if the
>> >
>> > parsed type                 |        requested type            |
>> behaviour
>> >
>> > WITHOUT TIMEZONE    |     WITH TIMEZONE             | store the local
>> > timezone with the data
>> >
>> > WITHOUT TIMEZONE    |     WITH LOCAL TIMEZONE  | do nothing in the data,
>> > interpret the time in local timezone
>> >
>> > WITH TIMEZONE          |     WITH LOCAL TIMEZONE   | convert the
>> timestamp
>> > to local timezone and drop the time zone information
>> >
>> > WITH TIMEZONE          |     WITHOUT TIMEZONE       | drop the time zone
>> > information
>> >
>> > It might just boil down to what you said "being more lenient with
>> regards
>> > to parsing the time zone". Nevertheless I think this way it is a bit
>> better
>> > defined behaviour, especially as it has a defined behaviour when
>> converting
>> > between representation with or without time zone.
>> >
>> > An implementation note. I think we should aim to base the implementation
>> > on the DataTypes already rather than going back to the TypeInformation.
>> >
>> > I would still try to leave the RFC 3339 compatibility mode, but maybe
>> for
>> > that mode it would make sense to not support any types WITHOUT TIMEZONE?
>> > This would be enabled with a switch (disabled by default). As I
>> understand
>> > the RFC, making the time zone mandatory is actually a big part of the
>> > standard as it makes time types unambiguous.
>> >
>> > What do you think?
>> >
>> > Ps. I cross posted this on the dev ML.
>> >
>> > Best,
>> >
>> > Dawid
>> >
>> >
>> > On 26/02/2020 03:45, Jark Wu wrote:
>> >
>> > Yes, I'm also in favor of loosen the datetime format constraint.
>> > I guess most of the users don't know there is a JSON standard which
>> > follows RFC 3339.
>> >
>> > Best,
>> > Jark
>> >
>> > On Wed, 26 Feb 2020 at 10:06, NiYanchun <niyanc...@outlook.com> wrote:
>> >
>> >> Yes, these Types definition are general. As a user/developer, I would
>> >> support “loosen it for usability”. If not, may add some explanation
>> >> about JSON.
>> >>
>> >>
>> >>
>> >>  Original Message
>> >> *Sender:* Jark Wu<imj...@gmail.com>
>> >> *Recipient:* Outlook<niyanc...@outlook.com>; Dawid Wysakowicz<
>> >> dwysakow...@apache.org>
>> >> *Cc:* godfrey he<godfre...@gmail.com>; Leonard Xu<xbjt...@gmail.com>;
>> >> user<u...@flink.apache.org>
>> >> *Date:* Wednesday, Feb 26, 2020 09:55
>> >> *Subject:* Re: TIME/TIMESTAMP parse in Flink TABLE/SQL API
>> >>
>> >> Hi Outlook,
>> >>
>> >> The explanation in DataTypes is correct, it is compliant to SQL
>> standard.
>> >> The problem is that JsonRowDeserializationSchema only support
>> RFC-3339.
>> >> On the other hand, CsvRowDeserializationSchema supports to parse
>> >> "2019-07-09 02:02:00.040".
>> >>
>> >> So the question is shall we insist on the RFC-3339 "standard"? Shall we
>> >> loosen it for usability?
>> >> What do you think @Dawid Wysakowicz <dwysakow...@apache.org> ?
>> >>
>> >> Best,
>> >> Jark
>> >>
>> >> On Wed, 26 Feb 2020 at 09:29, Outlook <niyanc...@outlook.com> wrote:
>> >>
>> >>> Thanks Godfrey and Leonard, I tried your answers, result is OK.
>> >>>
>> >>>
>> >>> BTW, I think if only accept such format for a long time, the  TIME and
>> >>> TIMESTAMP methods' doc in `org.apache.flink.table.api.DataTypes` may
>> be
>> >>> better to update,
>> >>>
>> >>> because the document now is not what the method really support. For
>> >>> example,
>> >>>
>> >>>
>> >>> ```
>> >>> /**
>> >>> * Data type of a time WITHOUT time zone {@code TIME} with no
>> fractional
>> >>> seconds by default.
>> >>> *
>> >>> * <p>An instance consists of {@code hour:minute:second} with up to
>> >>> second precision
>> >>> * and values ranging from {@code 00:00:00} to {@code 23:59:59}.
>> >>> *
>> >>> * <p>Compared to the SQL standard, leap seconds (23:59:60 and
>> 23:59:61)
>> >>> are not supported as the
>> >>> * semantics are closer to {@link java.time.LocalTime}. A time WITH
>> time
>> >>> zone is not provided.
>> >>> *
>> >>> * @see #TIME(int)
>> >>> * @see TimeType
>> >>> */
>> >>> public static DataType TIME() {
>> >>> return new AtomicDataType(new TimeType());
>> >>>
>> >>> }```
>> >>>
>> >>>
>> >>> Thanks again.
>> >>>
>> >>>  Original Message
>> >>> *Sender:* Leonard Xu<xbjt...@gmail.com>
>> >>> *Recipient:* godfrey he<godfre...@gmail.com>
>> >>> *Cc:* Outlook<niyanc...@outlook.com>; user<u...@flink.apache.org>
>> >>> *Date:* Tuesday, Feb 25, 2020 22:56
>> >>> *Subject:* Re: TIME/TIMESTAMP parse in Flink TABLE/SQL API
>> >>>
>> >>> Hi,Outlook
>> >>> Godfrey is right, you should follow the json format[1] when you parse
>> >>> your json message.
>> >>> You can use following code to produce a json data-time String.
>> >>> ```
>> >>>
>> >>> Long time = System.currentTimeMillis();DateFormat dateFormat =  new
>> SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSS'Z'");Date date = new
>> Date(time);String jsonSchemaDate = dateFormat.format(date);
>> >>>
>> >>> ```
>> >>> [1]
>> >>>
>> https://json-schema.org/understanding-json-schema/reference/string.html#dates-and-times
>> >>>
>> >>> 在 2020年2月25日,22:15,godfrey he <godfre...@gmail.com> 写道:
>> >>>
>> >>> hi, I find that JsonRowDeserializationSchema only supports date-time
>> >>> with timezone according to RFC 3339. So you need add timezone to time
>> data
>> >>> (like 14:02:00Z) and timestamp data(2019-07-09T02:02:00.040Z). Hope
>> it can
>> >>> help you.
>> >>>
>> >>> Bests,
>> >>> godfrey
>> >>>
>> >>> Outlook <niyanc...@outlook.com> 于2020年2月25日周二 下午5:49写道:
>> >>>
>> >>>> By the way, my flink version is 1.10.0.
>> >>>>
>> >>>>  Original Message
>> >>>> *Sender:* Outlook<niyanc...@outlook.com>
>> >>>> *Recipient:* user<u...@flink.apache.org>
>> >>>> *Date:* Tuesday, Feb 25, 2020 17:43
>> >>>> *Subject:* TIME/TIMESTAMP parse in Flink TABLE/SQL API
>> >>>>
>> >>>> Hi all,
>> >>>>
>> >>>> I read json data from kafka, and print to console. When I do this,
>> some
>> >>>> error occurs when time/timestamp deserialization.
>> >>>>
>> >>>> json data in Kafka:
>> >>>>
>> >>>> ```
>> >>>> {
>> >>>> "server_date": "2019-07-09",
>> >>>> "server_time": "14:02:00",
>> >>>> "reqsndtime_c": "2019-07-09 02:02:00.040"
>> >>>> }
>> >>>> ```
>> >>>>
>> >>>> flink code:
>> >>>>
>> >>>> ```
>> >>>> bsTableEnv.connect(
>> >>>> new Kafka()
>> >>>> .version("universal")
>> >>>> .topic("xxx")
>> >>>> .property("bootstrap.servers", "localhost:9092")
>> >>>> .property("zookeeper.connect", "localhost:2181")
>> >>>> .property("group.id", "g1")
>> >>>> .startFromEarliest()
>> >>>> ).withFormat(
>> >>>> new Json()
>> >>>> .failOnMissingField(false)
>> >>>> ).withSchema(
>> >>>> new Schema()
>> >>>> .field("server_date", DataTypes.DATE())
>> >>>> .field("server_time", DataTypes.TIME())
>> >>>> .field("reqsndtime_c", DataTypes.TIMESTAMP(3))
>> >>>> ).inAppendMode()
>> >>>> .createTemporaryTable("xxx”);
>> >>>> ```
>> >>>>
>> >>>>
>> >>>> server_date with format  is ok, but server_time with
>> DataTypes.DATE()
>> >>>> and reqsndtime_c with DataTypes.TIMESTAMP(3) cause error.  If I
>> change them
>> >>>> to DataTypes.STRING(), everything will be OK.
>> >>>>
>> >>>> Error message:
>> >>>> ```
>> >>>> Exception in thread "main" java.util.concurrent.ExecutionException:
>> >>>> org.apache.flink.client.program.ProgramInvocationException: Job
>> failed
>> >>>> (JobID: 395d1ba3d41f92734d4ef25aa5f9b4a1)
>> >>>> at
>> >>>>
>> java.util.concurrent.CompletableFuture.reportGet(CompletableFuture.java:357)
>> >>>> at
>> >>>>
>> java.util.concurrent.CompletableFuture.get(CompletableFuture.java:1895)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.execute(StreamExecutionEnvironment.java:1640)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.api.environment.LocalStreamEnvironment.execute(LocalStreamEnvironment.java:74)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.execute(StreamExecutionEnvironment.java:1620)
>> >>>> at
>> >>>>
>> org.apache.flink.table.planner.delegation.StreamExecutor.execute(StreamExecutor.java:42)
>> >>>> at
>> >>>>
>> org.apache.flink.table.api.internal.TableEnvironmentImpl.execute(TableEnvironmentImpl.java:643)
>> >>>> at cn.com.agree.Main.main(Main.java:122)
>> >>>> Caused by:
>> org.apache.flink.client.program.ProgramInvocationException:
>> >>>> Job failed (JobID: 395d1ba3d41f92734d4ef25aa5f9b4a1)
>> >>>> at
>> >>>>
>> org.apache.flink.client.deployment.ClusterClientJobClientAdapter.lambda$null$6(ClusterClientJobClientAdapter.java:112)
>> >>>> at
>> >>>>
>> java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:602)
>> >>>> at
>> >>>>
>> java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:577)
>> >>>> at
>> >>>>
>> java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:474)
>> >>>> at
>> >>>>
>> java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1962)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.concurrent.FutureUtils$1.onComplete(FutureUtils.java:874)
>> >>>> at akka.dispatch.OnComplete.internal(Future.scala:264)
>> >>>> at akka.dispatch.OnComplete.internal(Future.scala:261)
>> >>>> at akka.dispatch.japi$CallbackBridge.apply(Future.scala:191)
>> >>>> at akka.dispatch.japi$CallbackBridge.apply(Future.scala:188)
>> >>>> at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:36)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.concurrent.Executors$DirectExecutionContext.execute(Executors.java:74)
>> >>>> at
>> >>>>
>> scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:44)
>> >>>> at
>> >>>>
>> scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:252)
>> >>>> at akka.pattern.PromiseActorRef.$bang(AskSupport.scala:572)
>> >>>> at
>> >>>>
>> akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:22)
>> >>>> at
>> >>>>
>> akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:21)
>> >>>> at scala.concurrent.Future$$anonfun$andThen$1.apply(Future.scala:436)
>> >>>> at scala.concurrent.Future$$anonfun$andThen$1.apply(Future.scala:435)
>> >>>> at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:36)
>> >>>> at
>> >>>>
>> akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:55)
>> >>>> at
>> >>>>
>> akka.dispatch.BatchingExecutor$BlockableBatch$$anonfun$run$1.apply$mcV$sp(BatchingExecutor.scala:91)
>> >>>> at
>> >>>>
>> akka.dispatch.BatchingExecutor$BlockableBatch$$anonfun$run$1.apply(BatchingExecutor.scala:91)
>> >>>> at
>> >>>>
>> akka.dispatch.BatchingExecutor$BlockableBatch$$anonfun$run$1.apply(BatchingExecutor.scala:91)
>> >>>> at
>> >>>>
>> scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72)
>> >>>> at
>> >>>>
>> akka.dispatch.BatchingExecutor$BlockableBatch.run(BatchingExecutor.scala:90)
>> >>>> at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:40)
>> >>>> at
>> >>>>
>> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(ForkJoinExecutorConfigurator.scala:44)
>> >>>> at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
>> >>>> at
>> >>>>
>> akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
>> >>>> at
>> akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
>> >>>> at
>> >>>>
>> akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>> >>>> Caused by: org.apache.flink.runtime.client.JobExecutionException: Job
>> >>>> execution failed.
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.jobmaster.JobResult.toJobExecutionResult(JobResult.java:147)
>> >>>> at
>> >>>>
>> org.apache.flink.client.deployment.ClusterClientJobClientAdapter.lambda$null$6(ClusterClientJobClientAdapter.java:110)
>> >>>> ... 31 more
>> >>>> Caused by: org.apache.flink.runtime.JobException: Recovery is
>> >>>> suppressed by NoRestartBackoffTimeStrategy
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.handleFailure(ExecutionFailureHandler.java:110)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.getFailureHandlingResult(ExecutionFailureHandler.java:76)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.scheduler.DefaultScheduler.handleTaskFailure(DefaultScheduler.java:192)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.scheduler.DefaultScheduler.maybeHandleTaskFailure(DefaultScheduler.java:186)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.scheduler.DefaultScheduler.updateTaskExecutionStateInternal(DefaultScheduler.java:180)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.scheduler.SchedulerBase.updateTaskExecutionState(SchedulerBase.java:484)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.jobmaster.JobMaster.updateTaskExecutionState(JobMaster.java:380)
>> >>>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>> >>>> at
>> >>>>
>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
>> >>>> at
>> >>>>
>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>> >>>> at java.lang.reflect.Method.invoke(Method.java:498)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcInvocation(AkkaRpcActor.java:279)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:194)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:74)
>> >>>> at
>> >>>>
>> org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:152)
>> >>>> at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:26)
>> >>>> at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:21)
>> >>>> at scala.PartialFunction$class.applyOrElse(PartialFunction.scala:123)
>> >>>> at akka.japi.pf
>> .UnitCaseStatement.applyOrElse(CaseStatements.scala:21)
>> >>>> at
>> scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:170)
>> >>>> at
>> scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171)
>> >>>> at
>> scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171)
>> >>>> at akka.actor.Actor$class.aroundReceive(Actor.scala:517)
>> >>>> at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225)
>> >>>> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592)
>> >>>> at akka.actor.ActorCell.invoke(ActorCell.scala:561)
>> >>>> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:258)
>> >>>> at akka.dispatch.Mailbox.run(Mailbox.scala:225)
>> >>>> at akka.dispatch.Mailbox.exec(Mailbox.scala:235)
>> >>>> ... 4 more
>> >>>> Caused by: java.io.IOException: Failed to deserialize JSON object.
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.deserialize(JsonRowDeserializationSchema.java:133)
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.deserialize(JsonRowDeserializationSchema.java:76)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.connectors.kafka.internals.KafkaDeserializationSchemaWrapper.deserialize(KafkaDeserializationSchemaWrapper.java:45)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.connectors.kafka.internal.KafkaFetcher.runFetchLoop(KafkaFetcher.java:140)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.run(FlinkKafkaConsumerBase.java:715)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:100)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.api.operators.StreamSource.run(StreamSource.java:63)
>> >>>> at
>> >>>>
>> org.apache.flink.streaming.runtime.tasks.SourceStreamTask$LegacySourceFunctionThread.run(SourceStreamTask.java:196)
>> >>>> Caused by: java.time.format.DateTimeParseException: *Text '14:02:00'
>> >>>> could not be parsed at index 8*
>> >>>> at
>> >>>>
>> java.time.format.DateTimeFormatter.parseResolved0(DateTimeFormatter.java:1949)
>> >>>> at
>> java.time.format.DateTimeFormatter.parse(DateTimeFormatter.java:1777)
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.convertToLocalTime(JsonRowDeserializationSchema.java:390)
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$wrapIntoNullableConverter$d586c97$1(JsonRowDeserializationSchema.java:236)
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.convertField(JsonRowDeserializationSchema.java:439)
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$assembleRowConverter$77f7700$1(JsonRowDeserializationSchema.java:418)
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.lambda$wrapIntoNullableConverter$d586c97$1(JsonRowDeserializationSchema.java:236)
>> >>>> at
>> >>>>
>> org.apache.flink.formats.json.JsonRowDeserializationSchema.deserialize(JsonRowDeserializationSchema.java:131)
>> >>>> ... 7 more
>> >>>>
>> >>>> Process finished with exit code 1
>> >>>> ```
>> >>>>
>> >>>> reqsndtime_c with DataTypes.TIMESTAMP(3) has similar exception.  I
>> see
>> >>>> the doc,  DataTypes.TIME() value range is  from {@code 00:00:00} to
>> {@code
>> >>>> 23:59:59} , DataTypes.TIMESTAMP value range is from {@code 0000-01-01
>> >>>> 00:00:00.000000000} to
>> >>>> * {@code 9999-12-31 23:59:59.999999999}.  And my value is in the
>> range,
>> >>>> I don’t know why.  And I see this may be bug in java 8, I change jdk
>> to 11,
>> >>>>
>> >>>> error still occurs.
>> >>>>
>> >>>> Can someone give me some help, thanks in advance.
>> >>>>
>> >>>
>> >>>
>>
>
>
> --
> Best, Jingsong Lee
>

Reply via email to