Alexander Trushev created FLINK-28530:
-----------------------------------------
Summary: Improvement of conditions extraction that can be pushed
into join inputs
Key: FLINK-28530
URL: https://issues.apache.org/jira/browse/FLINK-28530
Project: Flink
Issue Type: Improvement
Components: Table SQL / Planner
Reporter: Alexander Trushev
Conditions extraction in batch mode was introduced here FLINK-12509 and in
stream mode here FLINK-24139
h2. Proposal
This ticket is aimed at replacing current extraction algorithm with new one
which covers more complex case with deep nested predicate:
for all n > 0
((((((((a0 and b0) or a1) and b1) or a2) and b2) or a3) ... and bn-1) or an) =>
(a0 or a1 or ... or an)
*Example.* For n = 3 Flink does not extract (a0 or a1 or a2 or a3):
{code:java}
FlinkSQL> explain select * from A join B on (((((a0=0 and b0=0) or a1=0) and
b1=0) or a2=0) and b2=0) or a3=0;
== Optimized Physical Plan ==
Join(joinType=[InnerJoin], where=[OR(AND(OR(AND(OR(AND(=(a0, 0), =(b0, 0)),
=(a1, 0)), =(b1, 0)), =(a2, 0)), =(b2, 0)), =(a3, 0))], select=[a0, a1, a2, a3,
a4, b0, b1, b2, b3, b4], leftInputSpec=[NoUniqueKey],
rightInputSpec=[NoUniqueKey])
:- Exchange(distribution=[single])
: +- TableSourceScan(table=[[default_catalog, default_database, A]],
fields=[a0, a1, a2, a3, a4])
+- Exchange(distribution=[single])
+- TableSourceScan(table=[[default_catalog, default_database, B]],
fields=[b0, b1, b2, b3, b4])
{code}
while PostgreSQL does:
{code:java}
postgres=# explain select * from A join B on ((((((a0=0 and b0=0) or a1=0) and
b1=0) or a2=0) and b2=0) or a3=0);
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
Nested Loop (cost=0.00..1805.09 rows=14632 width=40)
Join Filter: (((((((a.a0 = 0) AND (b.b0 = 0)) OR (a.a1 = 0)) AND (b.b1 = 0))
OR (a.a2 = 0)) AND (b.b2 = 0)) OR (a.a3 = 0))
-> Seq Scan on b (cost=0.00..27.00 rows=1700 width=20)
-> Materialize (cost=0.00..44.17 rows=34 width=20)
-> Seq Scan on a (cost=0.00..44.00 rows=34 width=20)
Filter: ((a0 = 0) OR (a1 = 0) OR (a2 = 0) OR (a3 = 0))
{code}
h2. Details
Pseudocode of new algorithm:
f – predicate
rel – table
var(rel) – columns
{code:java}
extract(f, rel)
if f = AND(left, right)
return AND(extract(left, rel), extract(left, rel))
if f = OR(left, right)
return OR(extract(left, rel), extract(left, rel))
if var(f) subsetOf var(rel)
return f
return True
AND(f, True) = AND(True, f) = f
OR(f, True) = OR(True, f) = True
{code}
This algorithm covers deep nested predicates and does not use CNF which
increases length of predicate to O(n * e^n) in the worst case.
The same recursive approache is used in [PostgreSQL
orclauses.c|https://github.com/postgres/postgres/blob/164d174bbf9a3aba719c845497863cd3c49a3ad0/src/backend/optimizer/util/orclauses.c#L151-L252]
and [Apache Spark
predicates.scala|https://github.com/apache/spark/blob/v3.3.0/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/predicates.scala#L227-L272]
--
This message was sent by Atlassian Jira
(v8.20.10#820010)