[ 
https://issues.apache.org/jira/browse/HBASE-26353?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Duo Zhang reopened HBASE-26353:
-------------------------------

The commit causes master build unstable.

https://ci-hadoop.apache.org/job/HBase/job/HBase%20Nightly/job/master/426/artifact/output-general/branch-spotbugs-hbase-common-warnings.html

{noformat}
Multithreaded correctness Warnings
Code    Warning
DC      Possible doublecheck on 
org.apache.hadoop.hbase.io.compress.DictionaryCache.CACHE in 
org.apache.hadoop.hbase.io.compress.DictionaryCache.getDictionary(Configuration,
 String)
Bug type DC_DOUBLECHECK (click for details)
In class org.apache.hadoop.hbase.io.compress.DictionaryCache
In method 
org.apache.hadoop.hbase.io.compress.DictionaryCache.getDictionary(Configuration,
 String)
On field org.apache.hadoop.hbase.io.compress.DictionaryCache.CACHE
At DictionaryCache.java:[lines 65-67]
{noformat}

The fix is straight forward, just add a volatile modifier to the CACHE field.

PTAL [~apurtell]. Thanks.

> Support loadable dictionaries in hbase-compression-zstd
> -------------------------------------------------------
>
>                 Key: HBASE-26353
>                 URL: https://issues.apache.org/jira/browse/HBASE-26353
>             Project: HBase
>          Issue Type: Sub-task
>            Reporter: Andrew Kyle Purtell
>            Assignee: Andrew Kyle Purtell
>            Priority: Minor
>             Fix For: 2.5.0, 3.0.0-alpha-2
>
>
> ZStandard supports initialization of compressors and decompressors with a 
> precomputed dictionary, which can dramatically improve and speed up 
> compression of tables with small values. For more details, please see [The 
> Case For Small Data 
> Compression|https://github.com/facebook/zstd#the-case-for-small-data-compression].
>  
> If a table is going to have a lot of small values and the user can put 
> together a representative set of files that can be used to train a dictionary 
> for compressing those values, a dictionary can be trained with the {{zstd}} 
> command line utility, available in any zstandard package for your favorite OS:
> Training:
> {noformat}
> $ zstd --maxdict=1126400 --train-fastcover=shrink \
>     -o mytable.dict training_files/*
> Trying 82 different sets of parameters
> ...
> k=674                                      
> d=8
> f=20
> steps=40
> split=75
> accel=1
> Save dictionary of size 1126400 into file mytable.dict
> {noformat}
> Deploy the dictionary file to HDFS or S3, etc.
> Create the table:
> {noformat}
> hbase> create "mytable", 
>   ... ,
>   CONFIGURATION => {
>     'hbase.io.compress.zstd.level' => '6',
>     'hbase.io.compress.zstd.dictionary' => 'hdfs://nn/zdicts/mytable.dict'
>   }
> {noformat}
> Now start storing data. Compression results even for small values will be 
> excellent.
> Note: Beware, if the dictionary is lost, the data will not be decompressable.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to