[ https://issues.apache.org/jira/browse/HBASE-26353?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Duo Zhang reopened HBASE-26353: ------------------------------- The commit causes master build unstable. https://ci-hadoop.apache.org/job/HBase/job/HBase%20Nightly/job/master/426/artifact/output-general/branch-spotbugs-hbase-common-warnings.html {noformat} Multithreaded correctness Warnings Code Warning DC Possible doublecheck on org.apache.hadoop.hbase.io.compress.DictionaryCache.CACHE in org.apache.hadoop.hbase.io.compress.DictionaryCache.getDictionary(Configuration, String) Bug type DC_DOUBLECHECK (click for details) In class org.apache.hadoop.hbase.io.compress.DictionaryCache In method org.apache.hadoop.hbase.io.compress.DictionaryCache.getDictionary(Configuration, String) On field org.apache.hadoop.hbase.io.compress.DictionaryCache.CACHE At DictionaryCache.java:[lines 65-67] {noformat} The fix is straight forward, just add a volatile modifier to the CACHE field. PTAL [~apurtell]. Thanks. > Support loadable dictionaries in hbase-compression-zstd > ------------------------------------------------------- > > Key: HBASE-26353 > URL: https://issues.apache.org/jira/browse/HBASE-26353 > Project: HBase > Issue Type: Sub-task > Reporter: Andrew Kyle Purtell > Assignee: Andrew Kyle Purtell > Priority: Minor > Fix For: 2.5.0, 3.0.0-alpha-2 > > > ZStandard supports initialization of compressors and decompressors with a > precomputed dictionary, which can dramatically improve and speed up > compression of tables with small values. For more details, please see [The > Case For Small Data > Compression|https://github.com/facebook/zstd#the-case-for-small-data-compression]. > > If a table is going to have a lot of small values and the user can put > together a representative set of files that can be used to train a dictionary > for compressing those values, a dictionary can be trained with the {{zstd}} > command line utility, available in any zstandard package for your favorite OS: > Training: > {noformat} > $ zstd --maxdict=1126400 --train-fastcover=shrink \ > -o mytable.dict training_files/* > Trying 82 different sets of parameters > ... > k=674 > d=8 > f=20 > steps=40 > split=75 > accel=1 > Save dictionary of size 1126400 into file mytable.dict > {noformat} > Deploy the dictionary file to HDFS or S3, etc. > Create the table: > {noformat} > hbase> create "mytable", > ... , > CONFIGURATION => { > 'hbase.io.compress.zstd.level' => '6', > 'hbase.io.compress.zstd.dictionary' => 'hdfs://nn/zdicts/mytable.dict' > } > {noformat} > Now start storing data. Compression results even for small values will be > excellent. > Note: Beware, if the dictionary is lost, the data will not be decompressable. -- This message was sent by Atlassian Jira (v8.3.4#803005)