[
https://issues.apache.org/jira/browse/HIVE-8722?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14255668#comment-14255668
]
Rui Li commented on HIVE-8722:
------------------------------
Hi [~brocknoland], I suppose this will be a little tricky for
CombineHiveInputFormat because after combination, it's possible that only a
part of blocks are in cache. Maybe that's why {{CombineFileSplit}} doesn't
implement {{InputSplitWithLocationInfo}}. Any ideas on this?
> Enhance InputSplitShims to extend InputSplitWithLocationInfo [Spark Branch]
> ---------------------------------------------------------------------------
>
> Key: HIVE-8722
> URL: https://issues.apache.org/jira/browse/HIVE-8722
> Project: Hive
> Issue Type: Sub-task
> Reporter: Jimmy Xiang
>
> We got thie following exception in hive.log:
> {noformat}
> 2014-11-03 11:45:49,865 DEBUG rdd.HadoopRDD
> (Logging.scala:logDebug(84)) - Failed to use InputSplitWithLocations.
> java.lang.ClassCastException: Cannot cast
> org.apache.hadoop.hive.ql.io.CombineHiveInputFormat$CombineHiveInputSplit
> to org.apache.hadoop.mapred.InputSplitWithLocationInfo
> at java.lang.Class.cast(Class.java:3094)
> at
> org.apache.spark.rdd.HadoopRDD.getPreferredLocations(HadoopRDD.scala:278)
> at
> org.apache.spark.rdd.RDD$$anonfun$preferredLocations$2.apply(RDD.scala:216)
> at
> org.apache.spark.rdd.RDD$$anonfun$preferredLocations$2.apply(RDD.scala:216)
> at scala.Option.getOrElse(Option.scala:120)
> at org.apache.spark.rdd.RDD.preferredLocations(RDD.scala:215)
> at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal(DAGScheduler.scala:1303)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$2.apply$mcVI$sp(DAGScheduler.scala:1313)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$getPreferredLocsInternal$2$$anonfun$apply$2.apply(DAGScheduler.scala:1312)
> {noformat}
> My understanding is that the split location info helps Spark to execute tasks
> more efficiently. This could help other execution engine too. So we should
> consider to enhance InputSplitShim to implement InputSplitWithLocationInfo if
> possible.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)