Patrick Lucas created KAFKA-2269: ------------------------------------ Summary: Partition imbalance does not converge to 0, even with auto.leader.rebalance.enable=true Key: KAFKA-2269 URL: https://issues.apache.org/jira/browse/KAFKA-2269 Project: Kafka Issue Type: Bug Components: controller Affects Versions: 0.8.2.1 Reporter: Patrick Lucas Assignee: Neha Narkhede Attachments: graph.png
In the past four days I have replaced six brokers in a high-volume cluster. As the new broker comes up and replicates the data it is responsible for, the cluster-wide partition imbalance trends toward zero. But predictably, with around 19 partitions to go, the partition imbalance levels off and never reaches zero, even after all partitions have a full ISR. I waited as long as 24 hours to experiment with this, and in each case I had to manually run a preferred replica election to correct the imbalance. The state-change log file on the controller does have a traceback for each partition contributing to the imbalance, as included below. !graph.png! {noformat} [2015-06-15 09:43:03,034] ERROR Controller 172337636 epoch 113 encountered error while electing leader for partition [my.topic,1] due to: Preferred replica 172340284 for partition [my.topic,1] is either not alive or not in the isr. Current leader and ISR: [{"leader":172314088,"leader_epoch":923,"isr":[172314088,172322941]}]. (state.change.logger) [2015-06-15 09:43:03,034] ERROR Controller 172337636 epoch 113 initiated state change for partition [my.topic,1] from OnlinePartition to OnlinePartition failed (state.change.logger) kafka.common.StateChangeFailedException: encountered error while electing leader for partition [my.topic,1] due to: Preferred replica 172340284 for partition [my.topic,1] is either not alive or not in the isr. Current leader and ISR: [{"leader":172314088,"leader_epoch":923,"isr":[172314088,172322941]}]. at kafka.controller.PartitionStateMachine.electLeaderForPartition(PartitionStateMachine.scala:380) at kafka.controller.PartitionStateMachine.kafka$controller$PartitionStateMachine$$handleStateChange(PartitionStateMachine.scala:208) at kafka.controller.PartitionStateMachine$$anonfun$handleStateChanges$2.apply(PartitionStateMachine.scala:146) at kafka.controller.PartitionStateMachine$$anonfun$handleStateChanges$2.apply(PartitionStateMachine.scala:145) at scala.collection.immutable.Set$Set1.foreach(Set.scala:74) at kafka.controller.PartitionStateMachine.handleStateChanges(PartitionStateMachine.scala:145) at kafka.controller.KafkaController.onPreferredReplicaElection(KafkaController.scala:631) at kafka.controller.KafkaController$$anonfun$kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance$4$$anonfun$apply$17$$anonfun$apply$5.apply$mcV$sp(KafkaController.scala:1158) at kafka.controller.KafkaController$$anonfun$kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance$4$$anonfun$apply$17$$anonfun$apply$5.apply(KafkaController.scala:1153) at kafka.controller.KafkaController$$anonfun$kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance$4$$anonfun$apply$17$$anonfun$apply$5.apply(KafkaController.scala:1153) at kafka.utils.Utils$.inLock(Utils.scala:535) at kafka.controller.KafkaController$$anonfun$kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance$4$$anonfun$apply$17.apply(KafkaController.scala:1150) at kafka.controller.KafkaController$$anonfun$kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance$4$$anonfun$apply$17.apply(KafkaController.scala:1148) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:98) at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:226) at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:39) at scala.collection.mutable.HashMap.foreach(HashMap.scala:98) at kafka.controller.KafkaController$$anonfun$kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance$4.apply(KafkaController.scala:1148) at kafka.controller.KafkaController$$anonfun$kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance$4.apply(KafkaController.scala:1127) at scala.collection.immutable.HashMap$HashMap1.foreach(HashMap.scala:224) at scala.collection.immutable.HashMap$HashTrieMap.foreach(HashMap.scala:403) at kafka.controller.KafkaController.kafka$controller$KafkaController$$checkAndTriggerPartitionRebalance(KafkaController.scala:1127) at kafka.controller.KafkaController$$anonfun$onControllerFailover$1.apply$mcV$sp(KafkaController.scala:326) at kafka.utils.KafkaScheduler$$anonfun$1.apply$mcV$sp(KafkaScheduler.scala:99) at kafka.utils.Utils$$anon$1.run(Utils.scala:54) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180) at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) at java.lang.Thread.run(Thread.java:745) Caused by: kafka.common.StateChangeFailedException: Preferred replica 172340284 for partition [my.topic,1] is either not alive or not in the isr. Current leader and ISR: [{"leader":172314088,"leader_epoch":923,"isr":[172314088,172322941]}] at kafka.controller.PreferredReplicaPartitionLeaderSelector.selectLeader(PartitionLeaderSelector.scala:159) at kafka.controller.PartitionStateMachine.electLeaderForPartition(PartitionStateMachine.scala:357) ... 32 more {noformat} -- This message was sent by Atlassian JIRA (v6.3.4#6332)