No, I deploy kylin on linux, this is my machine info:
--------------------------
3.2.0-4-amd64 #1 SMP Debian 3.2.82-1 x86_64 GNU/Linux
-------------------------

2017-06-20 

skyyws 



发件人:ShaoFeng Shi <[email protected]>
发送时间:2017-06-20 00:10
主题:Re: Build sample error with spark on kylin 2.0.0
收件人:"dev"<[email protected]>
抄送:

Are you running Kylin on windows? If yes, check: 
https://stackoverflow.com/questions/33211599/hadoop-error-on-windows-java-lang-unsatisfiedlinkerror
 

2017-06-19 21:55 GMT+08:00 skyyws <[email protected]>: 

> Hi all, 
> I met an error when using spark engine build kylin sample on step "Build 
> Cube with Spark", here is the exception log: 
> ------------------------------------------------------------ 
> ----------------------------- 
> Exception in thread "main" java.lang.UnsatisfiedLinkError: 
> org.apache.hadoop.util.NativeCrc32.nativeComputeChunkedSumsByteAr 
> ray(II[BI[BIILjava/lang/String;JZ)V 
>         at org.apache.hadoop.util.NativeCrc32. 
> nativeComputeChunkedSumsByteArray(Native Method) 
>         at org.apache.hadoop.util.NativeCrc32. 
> calculateChunkedSumsByteArray(NativeCrc32.java:86) 
>         at org.apache.hadoop.util.DataChecksum.calculateChunkedSums( 
> DataChecksum.java:430) 
>         at org.apache.hadoop.fs.FSOutputSummer.writeChecksumChunks( 
> FSOutputSummer.java:202) 
>         at org.apache.hadoop.fs.FSOutputSummer.write1( 
> FSOutputSummer.java:124) 
>         at org.apache.hadoop.fs.FSOutputSummer.write( 
> FSOutputSummer.java:110) 
>         at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write( 
> FSDataOutputStream.java:58) 
>         at java.io.DataOutputStream.write(DataOutputStream.java:107) 
>         at org.apache.hadoop.io.IOUtils.copyBytes(IOUtils.java:80) 
>         at org.apache.hadoop.io.IOUtils.copyBytes(IOUtils.java:52) 
>         at org.apache.hadoop.io.IOUtils.copyBytes(IOUtils.java:112) 
>         at org.apache.hadoop.fs.FileUtil.copy(FileUtil.java:366) 
>         at org.apache.hadoop.fs.FileUtil.copy(FileUtil.java:338) 
>         at org.apache.hadoop.fs.FileUtil.copy(FileUtil.java:289) 
>         at org.apache.spark.deploy.yarn.Client.copyFileToRemote( 
> Client.scala:317) 
>         at org.apache.spark.deploy.yarn.Client.org$apache$spark$ 
> deploy$yarn$Client$$distribute$1(Client.scala:407) 
>         at org.apache.spark.deploy.yarn.Client$$anonfun$ 
> prepareLocalResources$5.apply(Client.scala:446) 
>         at org.apache.spark.deploy.yarn.Client$$anonfun$ 
> prepareLocalResources$5.apply(Client.scala:444) 
>         at scala.collection.immutable.List.foreach(List.scala:318) 
>         at org.apache.spark.deploy.yarn.Client.prepareLocalResources( 
> Client.scala:444) 
>         at org.apache.spark.deploy.yarn.Client. 
> createContainerLaunchContext(Client.scala:727) 
>         at org.apache.spark.deploy.yarn.Client.submitApplication( 
> Client.scala:142) 
>         at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend. 
> start(YarnClientSchedulerBackend.scala:57) 
>         at org.apache.spark.scheduler.TaskSchedulerImpl.start( 
> TaskSchedulerImpl.scala:144) 
>         at org.apache.spark.SparkContext.<init>(SparkContext.scala:530) 
>         at org.apache.spark.api.java.JavaSparkContext.<init>( 
> JavaSparkContext.scala:59) 
>         at org.apache.kylin.engine.spark.SparkCubingByLayer.execute( 
> SparkCubingByLayer.java:150) 
>         at org.apache.kylin.common.util.AbstractApplication.execute( 
> AbstractApplication.java:37) 
>         at org.apache.kylin.common.util.SparkEntry.main(SparkEntry. 
> java:44) 
>         at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) 
>         at sun.reflect.NativeMethodAccessorImpl.invoke( 
> NativeMethodAccessorImpl.java:57) 
>         at sun.reflect.DelegatingMethodAccessorImpl.invoke( 
> DelegatingMethodAccessorImpl.java:43) 
>         at java.lang.reflect.Method.invoke(Method.java:606) 
>         at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$ 
> deploy$SparkSubmit$$runMain(SparkSubmit.scala:731) 
>         at org.apache.spark.deploy.SparkSubmit$.doRunMain$1( 
> SparkSubmit.scala:181) 
>         at org.apache.spark.deploy.SparkSubmit$.submit( 
> SparkSubmit.scala:206) 
>         at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit. 
> scala:121) 
>         at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) 
> 17/06/19 21:22:06 INFO storage.DiskBlockManager: Shutdown hook called 
> 17/06/19 21:22:06 INFO util.ShutdownHookManager: Shutdown hook called 
> 17/06/19 21:22:06 INFO util.ShutdownHookManager: Deleting directory 
> /tmp/spark-0d1d3709-86cd-446c-b728-5070f168de28 
> 17/06/19 21:22:06 INFO util.ShutdownHookManager: Deleting directory 
> /tmp/spark-0d1d3709-86cd-446c-b728-5070f168de28/httpd- 
> 9bcb9a5d-569f-4f28-ad89-038a9020eda8 
> 17/06/19 21:22:06 INFO util.ShutdownHookManager: Deleting directory 
> /tmp/spark-0d1d3709-86cd-446c-b728-5070f168de28/userFiles- 
> 2e9ff265-3d37-40e0-8894-6fd4d1a3ad8b 
> 
>         at org.apache.kylin.common.util.CliCommandExecutor.execute( 
> CliCommandExecutor.java:92) 
>         at org.apache.kylin.engine.spark.SparkExecutable.doWork( 
> SparkExecutable.java:124) 
>         at org.apache.kylin.job.execution.AbstractExecutable. 
> execute(AbstractExecutable.java:124) 
>         at org.apache.kylin.job.execution.DefaultChainedExecutable.doWork( 
> DefaultChainedExecutable.java:64) 
>         at org.apache.kylin.job.execution.AbstractExecutable. 
> execute(AbstractExecutable.java:124) 
>         at org.apache.kylin.job.impl.threadpool.DefaultScheduler$ 
> JobRunner.run(DefaultScheduler.java:142) 
>         at java.util.concurrent.ThreadPoolExecutor.runWorker( 
> ThreadPoolExecutor.java:1145) 
>         at java.util.concurrent.ThreadPoolExecutor$Worker.run( 
> ThreadPoolExecutor.java:615) 
>         at java.lang.Thread.run(Thread.java:745) 
> 
> ------------------------------------------------------------ 
> ----------------------------- 
> I can use the kylin in-build spark-shell to do some operations like: 
> ------------------------------------------------------------ 
> ----------------------------- 
> var textFile = sc.textFile("hdfs://xxxx/xxxx/README.md") 
> textFile.count() 
> textFile.first() 
> textFile.filter(line => line.contains("hello")).count() 
> ------------------------------------------------------------ 
> ----------------------------- 
> Here is the env info: 
> kylin version is 2.0.0 
> hadoop version is 2.7.* 
> spark version is 1.6.* 
> ------------------------------------------------------------ 
> ----------------------------- 
> Anyone can help me?THX 
> 
> 
> 2017-06-19 
> skyyws 




--  
Best regards, 

Shaofeng Shi 史少锋 

Reply via email to