Hi lk,
  I have fixed this issue, and the code is in Kylin's master branch now.

  If your situation is very urgent, you can apply the commit[
https://github.com/apache/kylin/commit/ed266aa98d8524a344469b1e1ead8bfd462702d8]
and build a new binary package.

  Btw, to keep the previous behavior(optimize job using inmem algorithm as
default), I just add a new configuration parameter(
*kylin.cube.algorithm.inmem-auto-optimize*) to remove the above limitation,
you need to set *kylin.cube.algorithm.inmem-auto-optimize *to *false*, and
then the optimize job will use the algorithm as you configured(like:
*kylin.cube.algorithm=layer*).

On Thu, Apr 11, 2019 at 6:00 PM lk_hadoop <lk_had...@163.com> wrote:

> thank you ~ @Long Chao
>
> 2019-04-11
>
> lk_hadoop
>
>
>
> 发件人:Long Chao <chao.long0...@gmail.com>
> 发送时间:2019-04-11 17:56
> 主题:Re: 答复: can't pass step Build Cube In-Mem
> 收件人:"dev"<dev@kylin.apache.org>
> 抄送:
>
> Hi lk,
>      Optimize job will only build the newly generated cuboids in the
> recommended cuboid list, usually the amount of them is not too large.
>      So, by default, we use inmem algorithm to build those new cuboids,
> but
> now the algorithm can't be overwritten by properties file.
>
>      And I create a jira for this problem to make the algorithm
> configurable. https://issues.apache.org/jira/browse/KYLIN-3950
>
> On Thu, Apr 11, 2019 at 5:49 PM lk_hadoop <lk_had...@163.com> wrote:
>
> > I think that's not too much :
> >
> > Cuboid Distribution
> > Current Cuboid Distribution
> > [Cuboid Count: 49] [Row Count: 1117994636]
> >
> > Recommend Cuboid Distribution
> > [Cuboid Count: 168] [Row Count: 464893216]
> >
> >
> > 2019-04-11
> >
> > lk_hadoop
> >
> >
> >
> > 发件人:Na Zhai <na.z...@kyligence.io>
> > 发送时间:2019-04-11 17:42
> > 主题:答复: can't pass step Build Cube In-Mem
> > 收件人:"dev@kylin.apache.org"<dev@kylin.apache.org>
> > 抄送:
> >
> > Hi, lk_hadoop.
> >
> >
> >
> > Does Cube planner recommend too many cuboid? If so, it may cause OOM.
> >
> >
> >
> >
> >
> > 发送自 Windows 10 版邮件<https://go.microsoft.com/fwlink/?LinkId=550986>应用
> >
> >
> >
> > ________________________________
> > 发件人: lk_hadoop <lk_had...@163.com>
> > 发送时间: Tuesday, April 9, 2019 9:21:59 AM
> > 收件人: dev
> > 主题: can't pass step Build Cube In-Mem
> >
> > hi,all :
> >    I'm using kylin-2.6.1-cdh57, and the source row count is 500
> million,I
> > can success build cube .
> >    but when I use the cube planner , it has one step : Build Cube In-Mem
> > for job :OPTIMIZE CUBE
> >    the config about the kylin_job_conf_inmem.xml is :
> >
> >    <property>
> >         <name>mapreduce.map.memory.mb</name>
> >         <value>9216</value>
> >         <description></description>
> >     </property>
> >
> >     <property>
> >         <name>mapreduce.map.java.opts</name>
> >         <value>-Xmx8192m -XX:OnOutOfMemoryError='kill -9 %p'</value>
> >         <description></description>
> >     </property>
> >
> >     <property>
> >         <name>mapreduce.job.is-mem-hungry</name>
> >         <value>true</value>
> >     </property>
> >
> >     <property>
> >         <name>mapreduce.job.split.metainfo.maxsize</name>
> >         <value>-1</value>
> >         <description>The maximum permissible size of the split metainfo
> > file.
> >             The JobTracker won't attempt to read split metainfo files
> > bigger than
> >             the configured value. No limits if set to -1.
> >         </description>
> >     </property>
> >
> >     <property>
> >         <name>mapreduce.job.max.split.locations</name>
> >         <value>2000</value>
> >         <description>No description</description>
> >     </property>
> >
> >     <property>
> >         <name>mapreduce.task.io.sort.mb</name>
> >         <value>200</value>
> >         <description></description>
> >     </property>
> >
> >
> >     finally the map job will be killed for OnOutOfMemoryError  , but
> when
> > I giev more mem for map job , I will get another error :
> > java.nio.BufferOverflowException
> >
> >     why kylin will run the job inmem ? how can I avoid it ?
> >
> >
> >
> > 2019-04-08
> >
> >
> > lk_hadoop

Reply via email to