[
https://issues.apache.org/jira/browse/SOLR-8542?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15163109#comment-15163109
]
Christine Poerschke commented on SOLR-8542:
-------------------------------------------
Question related to the optional {{"store"}} element in the features and model
JSON.
Could you clarify/outline when/how the "store" element would be used?
Illustration:
{code}
###### features.json
[
{
"name":"isBook",
# absence of "store" element means default store
"type":"org.apache.solr.ltr.feature.impl.OriginalScoreFeature",
"params":{}
},
{
"name": "isBook", # same feature name but different store (and different type
and/or params)
"store": "someStore",
"type": "org.apache.solr.ltr.feature.impl.SolrFeature",
"params":{ "fq": ["{!terms f=category}book"] }
}
]
...
###### model.json
{
"type":"org.apache.solr.ltr.ranking.RankSVMModel",
"name":"myModelName",
"name":"myStore", # can this model reference features from another store
(in this example assume the myStore store has no isBook feature)?
"features":[
{ "name": "userTextTitleMatch"},
{ "name": "originalScore"},
{ "name": "isBook"}
],
"params":{
"weights": {
"userTextTitleMatch": 1.0,
"originalScore": 0.5,
"isBook": 0.1
}
}
}
{code}
Are feature and model stores local to each solr config or can they be shared
across configs? Illustration:
{code}
###### extract from zookeeper data:
/collections
/collections/collection1
DATA:
{"configName":"configA"}
/collections/collection2
DATA:
{"configName":"configB"}
/configs
/configs/configA
/configs/configA/solrconfig.xml
/configs/configA/schema.xml
/configs/configB
/configs/configB/solrconfig.xml
/configs/configB/schema.xml
???/features.json
???/model.json
{code}
> Integrate Learning to Rank into Solr
> ------------------------------------
>
> Key: SOLR-8542
> URL: https://issues.apache.org/jira/browse/SOLR-8542
> Project: Solr
> Issue Type: New Feature
> Reporter: Joshua Pantony
> Assignee: Christine Poerschke
> Priority: Minor
> Attachments: README.md, README.md, SOLR-8542-branch_5x.patch,
> SOLR-8542-trunk.patch
>
>
> This is a ticket to integrate learning to rank machine learning models into
> Solr. Solr Learning to Rank (LTR) provides a way for you to extract features
> directly inside Solr for use in training a machine learned model. You can
> then deploy that model to Solr and use it to rerank your top X search
> results. This concept was previously presented by the authors at Lucene/Solr
> Revolution 2015 (
> http://www.slideshare.net/lucidworks/learning-to-rank-in-solr-presented-by-michael-nilsson-diego-ceccarelli-bloomberg-lp
> ).
> The attached code was jointly worked on by Joshua Pantony, Michael Nilsson,
> David Grohmann and Diego Ceccarelli.
> Any chance this could make it into a 5x release? We've also attached
> documentation as a github MD file, but are happy to convert to a desired
> format.
> h3. Test the plugin with solr/example/techproducts in 6 steps
> Solr provides some simple example of indices. In order to test the plugin
> with
> the techproducts example please follow these steps
> h4. 1. compile solr and the examples
> cd solr
> ant dist
> ant example
> h4. 2. run the example
> ./bin/solr -e techproducts
> h4. 3. stop it and install the plugin:
>
> ./bin/solr stop
> mkdir example/techproducts/solr/techproducts/lib
> cp build/contrib/ltr/lucene-ltr-6.0.0-SNAPSHOT.jar
> example/techproducts/solr/techproducts/lib/
> cp contrib/ltr/example/solrconfig.xml
> example/techproducts/solr/techproducts/conf/
> h4. 4. run the example again
>
> ./bin/solr -e techproducts
> h4. 5. index some features and a model
> curl -XPUT 'http://localhost:8983/solr/techproducts/schema/fstore'
> --data-binary "@./contrib/ltr/example/techproducts-features.json" -H
> 'Content-type:application/json'
> curl -XPUT 'http://localhost:8983/solr/techproducts/schema/mstore'
> --data-binary "@./contrib/ltr/example/techproducts-model.json" -H
> 'Content-type:application/json'
> h4. 6. have fun !
> *access to the default feature store*
> http://localhost:8983/solr/techproducts/schema/fstore/_DEFAULT_
> *access to the model store*
> http://localhost:8983/solr/techproducts/schema/mstore
> *perform a query using the model, and retrieve the features*
> http://localhost:8983/solr/techproducts/query?indent=on&q=test&wt=json&rq={!ltr%20model=svm%20reRankDocs=25%20efi.query=%27test%27}&fl=*,[features],price,score,name&fv=true
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]