fmcquillan99 commented on pull request #513:
URL: https://github.com/apache/madlib/pull/513#issuecomment-690776040


   iris dataset
   
   (1)
   schedule:
   ```
    s | i | n_i | r_i 
   ---+---+-----+-----
    2 | 0 |   9 |   1
    2 | 1 |   3 |   3
    2 | 2 |   1 |   9
    1 | 0 |   3 |   3
    1 | 1 |   1 |   9
    0 | 0 |   3 |   9
   (6 rows)
   ```
   train:
   ```
   DROP TABLE IF EXISTS automl_output, automl_output_info, 
automl_output_summary, automl_mst_table, automl_mst_table_summary;
   
   SELECT madlib.madlib_keras_automl('iris_train_packed', 
                                     'automl_output', 
                                     'model_arch_library_iris', 
                                     'automl_mst_table',
                                     ARRAY[1], 
                                     $${'loss': ['categorical_crossentropy'], 
'optimizer_params_list': [ {'optimizer': ['Adam'],'lr': [0.00999, 0.01001, 
'log']}], 'metrics':['accuracy']}$$, 
                                     $${'batch_size': [8], 'epochs': [1]}$$,
                                     'hyperband', 
                                     'R=9, eta=3, skip_last=0',
                                     42,                  -- random state
                                     NULL,                  -- object table
                                     FALSE,                 -- use GPUs
                                     'iris_test_packed',    -- validation table
                                      1,                     -- metrics compute 
freq
                                     'a name is a name',                  -- 
name
                                     'a descr is a descr');                 -- 
descr
   ```
   produces:
   ```
   INFO:  *** Diagonally evaluating 9 configs under bracket=2 & round=0 with 1 
iterations ***
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 1: 8.45693087578 sec
   DETAIL:  
        Training set after iteration 1:
        mst_key=2: metric=0.933333337307, loss=0.538550555706
        mst_key=8: metric=0.316666662693, loss=1.03528738022
        mst_key=3: metric=0.675000011921, loss=0.833593308926
        mst_key=6: metric=0.658333361149, loss=0.825735092163
        mst_key=1: metric=0.808333337307, loss=0.872115910053
        mst_key=7: metric=0.625, loss=0.974291205406
        mst_key=9: metric=0.658333361149, loss=0.830321311951
        mst_key=4: metric=0.658333361149, loss=0.885693848133
        mst_key=5: metric=0.341666668653, loss=1.09756851196
        Validation set after iteration 1:
        mst_key=2: metric=0.966666638851, loss=0.534965932369
        mst_key=8: metric=0.366666674614, loss=1.03363573551
        mst_key=3: metric=0.633333325386, loss=0.872259676456
        mst_key=6: metric=0.699999988079, loss=0.799027740955
        mst_key=1: metric=0.833333313465, loss=0.866640985012
        mst_key=7: metric=0.5, loss=0.974297106266
        mst_key=9: metric=0.699999988079, loss=0.829889714718
        mst_key=4: metric=0.699999988079, loss=0.885949194431
        mst_key=5: metric=0.300000011921, loss=1.10424804688
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  *** Diagonally evaluating 3 configs under bracket=2 & round=1, 3 
configs under bracket=1 & round=0 with 3 iterations ***
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 1: 4.89221119881 sec
   DETAIL:  
        Training set after iteration 1:
        mst_key=9: metric=0.658333361149, loss=0.530654907227
        mst_key=6: metric=0.774999976158, loss=0.531277298927
        mst_key=11: metric=0.691666662693, loss=0.861804306507
        mst_key=2: metric=0.716666638851, loss=0.426045030355
        mst_key=12: metric=0.608333349228, loss=0.984588444233
        mst_key=10: metric=0.324999988079, loss=1.17993462086
        Validation set after iteration 1:
        mst_key=9: metric=0.699999988079, loss=0.514933288097
        mst_key=6: metric=0.800000011921, loss=0.519642591476
        mst_key=11: metric=0.666666686535, loss=0.861222624779
        mst_key=2: metric=0.733333349228, loss=0.385236173868
        mst_key=12: metric=0.699999988079, loss=0.961848556995
        mst_key=10: metric=0.366666674614, loss=1.16651546955
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 2: 5.0256319046 sec
   DETAIL:  
        Training set after iteration 2:
        mst_key=9: metric=0.966666638851, loss=0.432032138109
        mst_key=6: metric=0.908333361149, loss=0.361528068781
        mst_key=11: metric=0.858333349228, loss=0.686981141567
        mst_key=2: metric=0.758333325386, loss=0.373835682869
        mst_key=12: metric=0.600000023842, loss=0.89406478405
        mst_key=10: metric=0.341666668653, loss=1.13211238384
        Validation set after iteration 2:
        mst_key=9: metric=0.933333337307, loss=0.442799389362
        mst_key=6: metric=0.933333337307, loss=0.350269824266
        mst_key=11: metric=0.833333313465, loss=0.694237530231
        mst_key=2: metric=0.899999976158, loss=0.325422286987
        mst_key=12: metric=0.699999988079, loss=0.868638038635
        mst_key=10: metric=0.300000011921, loss=1.14590144157
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 3: 4.99592685699 sec
   DETAIL:  
        Training set after iteration 3:
        mst_key=9: metric=0.699999988079, loss=0.403143405914
        mst_key=6: metric=0.949999988079, loss=0.292406588793
        mst_key=11: metric=0.949999988079, loss=0.614805757999
        mst_key=2: metric=0.658333361149, loss=0.662374198437
        mst_key=12: metric=0.47499999404, loss=0.713567197323
        mst_key=10: metric=0.40000000596, loss=1.08757543564
        Validation set after iteration 3:
        mst_key=9: metric=0.733333349228, loss=0.365277469158
        mst_key=6: metric=0.899999976158, loss=0.303717941046
        mst_key=11: metric=0.966666638851, loss=0.615865588188
        mst_key=2: metric=0.633333325386, loss=0.758127868176
        mst_key=12: metric=0.566666662693, loss=0.689917981625
        mst_key=10: metric=0.300000011921, loss=1.09673452377
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  *** Diagonally evaluating 1 configs under bracket=2 & round=2, 1 
configs under bracket=1 & round=1, 3 configs under bracket=0 & round=0 with 9 
iterations ***
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 1: 4.01545906067 sec
   DETAIL:  
        Training set after iteration 1:
        mst_key=11: metric=0.949999988079, loss=0.535947144032
        mst_key=13: metric=0.658333361149, loss=0.576903045177
        mst_key=6: metric=0.725000023842, loss=0.413865655661
        mst_key=15: metric=0.566666662693, loss=0.821544110775
        mst_key=14: metric=0.608333349228, loss=1.00213348866
        Validation set after iteration 1:
        mst_key=11: metric=0.866666674614, loss=0.556911349297
        mst_key=13: metric=0.699999988079, loss=0.577660501003
        mst_key=6: metric=0.666666686535, loss=0.506598353386
        mst_key=15: metric=0.600000023842, loss=0.782476782799
        mst_key=14: metric=0.566666662693, loss=1.00861167908
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 2: 4.0810611248 sec
   DETAIL:  
        Training set after iteration 2:
        mst_key=11: metric=0.958333313465, loss=0.461322844028
        mst_key=13: metric=0.658333361149, loss=0.488560408354
        mst_key=6: metric=0.824999988079, loss=0.323733448982
        mst_key=15: metric=0.875, loss=0.656310975552
        mst_key=14: metric=0.658333361149, loss=0.641188919544
        Validation set after iteration 2:
        mst_key=11: metric=0.866666674614, loss=0.486970752478
        mst_key=13: metric=0.699999988079, loss=0.468940109015
        mst_key=6: metric=0.733333349228, loss=0.393083393574
        mst_key=15: metric=0.800000011921, loss=0.679034292698
        mst_key=14: metric=0.699999988079, loss=0.636842608452
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 3: 3.9402680397 sec
   DETAIL:  
        Training set after iteration 3:
        mst_key=11: metric=0.841666638851, loss=0.428030073643
        mst_key=13: metric=0.933333337307, loss=0.341508597136
        mst_key=6: metric=0.933333337307, loss=0.217096969485
        mst_key=15: metric=0.941666662693, loss=0.388799399137
        mst_key=14: metric=0.916666686535, loss=0.44380658865
        Validation set after iteration 3:
        mst_key=11: metric=0.733333349228, loss=0.495877951384
        mst_key=13: metric=0.966666638851, loss=0.35888004303
        mst_key=6: metric=0.933333337307, loss=0.196621760726
        mst_key=15: metric=0.866666674614, loss=0.401055067778
        mst_key=14: metric=0.933333337307, loss=0.44562998414
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 4: 4.27783608437 sec
   DETAIL:  
        Training set after iteration 4:
        mst_key=11: metric=0.899999976158, loss=0.348980903625
        mst_key=13: metric=0.949999988079, loss=0.273842066526
        mst_key=6: metric=0.824999988079, loss=0.307050615549
        mst_key=15: metric=0.941666662693, loss=0.25471162796
        mst_key=14: metric=0.966666638851, loss=0.266296118498
        Validation set after iteration 4:
        mst_key=11: metric=0.833333313465, loss=0.420216292143
        mst_key=13: metric=0.866666674614, loss=0.317742973566
        mst_key=6: metric=0.899999976158, loss=0.230505168438
        mst_key=15: metric=0.899999976158, loss=0.281882911921
        mst_key=14: metric=0.966666638851, loss=0.275415152311
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 5: 4.06583809853 sec
   DETAIL:  
        Training set after iteration 5:
        mst_key=11: metric=0.958333313465, loss=0.315752029419
        mst_key=13: metric=0.708333313465, loss=0.4172565341
        mst_key=6: metric=0.958333313465, loss=0.151342079043
        mst_key=15: metric=0.975000023842, loss=0.179173886776
        mst_key=14: metric=0.983333349228, loss=0.177039191127
        Validation set after iteration 5:
        mst_key=11: metric=0.866666674614, loss=0.342488378286
        mst_key=13: metric=0.633333325386, loss=0.558800399303
        mst_key=6: metric=0.966666638851, loss=0.153643578291
        mst_key=15: metric=1.0, loss=0.174838155508
        mst_key=14: metric=0.966666638851, loss=0.192256584764
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 6: 4.02019715309 sec
   DETAIL:  
        Training set after iteration 6:
        mst_key=11: metric=0.883333325386, loss=0.296552926302
        mst_key=13: metric=0.899999976158, loss=0.248627394438
        mst_key=6: metric=0.858333349228, loss=0.285588264465
        mst_key=15: metric=0.949999988079, loss=0.167279005051
        mst_key=14: metric=0.899999976158, loss=0.227244228125
        Validation set after iteration 6:
        mst_key=11: metric=0.833333313465, loss=0.401087760925
        mst_key=13: metric=0.833333313465, loss=0.321891099215
        mst_key=6: metric=0.733333349228, loss=0.421591818333
        mst_key=15: metric=0.966666638851, loss=0.138948410749
        mst_key=14: metric=0.800000011921, loss=0.34265729785
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 7: 4.27092909813 sec
   DETAIL:  
        Training set after iteration 7:
        mst_key=11: metric=0.891666650772, loss=0.248297154903
        mst_key=13: metric=0.891666650772, loss=0.24527259171
        mst_key=6: metric=0.949999988079, loss=0.12675113976
        mst_key=15: metric=0.916666686535, loss=0.215490117669
        mst_key=14: metric=0.958333313465, loss=0.127076357603
        Validation set after iteration 7:
        mst_key=11: metric=0.866666674614, loss=0.335224747658
        mst_key=13: metric=0.766666650772, loss=0.349867284298
        mst_key=6: metric=1.0, loss=0.120815463364
        mst_key=15: metric=0.933333337307, loss=0.161028474569
        mst_key=14: metric=0.899999976158, loss=0.196913182735
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 8: 4.16106319427 sec
   DETAIL:  
        Training set after iteration 8:
        mst_key=11: metric=0.958333313465, loss=0.21432980895
        mst_key=13: metric=0.75, loss=0.440660595894
        mst_key=6: metric=0.791666686535, loss=0.416923582554
        mst_key=15: metric=0.933333337307, loss=0.161955311894
        mst_key=14: metric=0.908333361149, loss=0.182602509856
        Validation set after iteration 8:
        mst_key=11: metric=0.866666674614, loss=0.264829039574
        mst_key=13: metric=0.699999988079, loss=0.644149899483
        mst_key=6: metric=0.899999976158, loss=0.281583458185
        mst_key=15: metric=0.866666674614, loss=0.226034641266
        mst_key=14: metric=0.866666674614, loss=0.33136048913
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 9: 4.84911680222 sec
   DETAIL:  
        Training set after iteration 9:
        mst_key=11: metric=0.975000023842, loss=0.221068292856
        mst_key=13: metric=0.983333349228, loss=0.138952031732
        mst_key=6: metric=0.816666662693, loss=0.403530687094
        mst_key=15: metric=0.941666662693, loss=0.168528050184
        mst_key=14: metric=0.958333313465, loss=0.14608065784
        Validation set after iteration 9:
        mst_key=11: metric=0.966666638851, loss=0.236671224236
        mst_key=13: metric=0.966666638851, loss=0.161113128066
        mst_key=6: metric=0.899999976158, loss=0.267582565546
        mst_key=15: metric=0.966666638851, loss=0.120766565204
        mst_key=14: metric=0.966666638851, loss=0.127617403865
   CONTEXT:  PL/Python function "madlib_keras_automl"
    madlib_keras_automl 
   ---------------------
    
   (1 row)
   
   Time: 93722.857 ms
   ```
   
![image](https://user-images.githubusercontent.com/10538173/92820545-ee707e00-f37e-11ea-927b-df37bdf50dce.png)
   
   OK


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to