fmcquillan99 commented on pull request #518:
URL: https://github.com/apache/madlib/pull/518#issuecomment-699088843


   (5)
   In this test the 2nd batch is worse than the 1st batch:
   ```
   madlib=# SELECT madlib.madlib_keras_automl('cifar10_train_packed', 
   madlib(#                                   'automl_cifar10_output', 
   madlib(#                                   'model_arch_library', 
   madlib(#                                   'automl_cifar10_mst_table',
   madlib(#                                   ARRAY[1,2], 
   madlib(#                                   $${'loss': 
['categorical_crossentropy'], 
   madlib$#                                      'optimizer_params_list': [ 
   madlib$#                                          {'optimizer': 
['Adam'],'lr': [0.0005, 0.01, 'log']},
   madlib$#                                          {'optimizer': 
['SGD'],'lr': [0.001, 0.01, 'log'], 'momentum': [0.90, 0.91,'log']}],
   madlib$#                                      'metrics':['accuracy']}$$, 
   madlib(#                                   $${'batch_size': [64,128], 
'epochs': [1]}$$,
   madlib(#                                   'hyperopt', 
   madlib(#                                   'num_models=10, num_iters=2, 
algorithm=tpe',
   madlib(#                                   NULL,                    -- 
random state
   madlib(#                                   NULL,                  -- object 
table
   madlib(#                                   FALSE,                 -- use GPUs
   madlib(#                                   'cifar10_val_packed', -- 
validation table
   madlib(#                                   1,                     -- metrics 
compute freq
   madlib(#                                   NULL,                  -- name
   madlib(#                                   NULL);                 -- descr
   
   
   INFO:  
        Time for training in iteration 1: 1070.08548617 sec
   DETAIL:  
        Training set after iteration 1:
        mst_key=1: metric=0.526019990444, loss=1.5796225071
        mst_key=5: metric=0.562780022621, loss=1.37457168102
        mst_key=4: metric=0.65314000845, loss=0.969262957573
        mst_key=2: metric=0.10000000149, loss=2.30277729034
        mst_key=3: metric=0.464760005474, loss=1.50251471996
        Validation set after iteration 1:
        mst_key=1: metric=0.523299992085, loss=1.60135388374
        mst_key=5: metric=0.559000015259, loss=1.40086007118
        mst_key=4: metric=0.640600025654, loss=1.00141870975
        mst_key=2: metric=0.10000000149, loss=2.30277705193
        mst_key=3: metric=0.463400006294, loss=1.50355136395
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 2: 1064.05229688 sec
   DETAIL:  
        Training set after iteration 2:
        mst_key=1: metric=0.703299999237, loss=0.840497553349
        mst_key=5: metric=0.664420008659, loss=0.98249232769
        mst_key=4: metric=0.754859983921, loss=0.701396882534
        mst_key=2: metric=0.10000000149, loss=2.30290770531
        mst_key=3: metric=0.535520017147, loss=1.26898431778
        Validation set after iteration 2:
        mst_key=1: metric=0.68900001049, loss=0.903733193874
        mst_key=5: metric=0.653800010681, loss=1.02747094631
        mst_key=4: metric=0.735899984837, loss=0.765290260315
        mst_key=2: metric=0.10000000149, loss=2.30290770531
        mst_key=3: metric=0.530799984932, loss=1.28327465057
   CONTEXT:  PL/Python function "madlib_keras_automl"
   
   INFO:  
   Best training loss so far:
   DETAIL:  
   mst_key=4: metric=0.754859983921, loss=0.701396882534
   Best validation loss so far:
   mst_key=4: metric=0.735899984837, loss=0.765290260315
   
   
   
   INFO:  ***Evaluating 5 newly suggested model configurations***
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 1: 1058.9834702 sec
   DETAIL:  
        Training set after iteration 1:
        mst_key=6: metric=0.553560018539, loss=1.41088056564
        mst_key=10: metric=0.353260010481, loss=1.84440767765
        mst_key=9: metric=0.519379973412, loss=1.35283255577
        mst_key=7: metric=0.517820000648, loss=1.31637942791
        mst_key=8: metric=0.51289999485, loss=1.32810485363
        Validation set after iteration 1:
        mst_key=6: metric=0.547699987888, loss=1.44565415382
        mst_key=10: metric=0.358599990606, loss=1.83988237381
        mst_key=9: metric=0.518999993801, loss=1.36131703854
        mst_key=7: metric=0.515799999237, loss=1.32058382034
        mst_key=8: metric=0.507099986076, loss=1.33919155598
   CONTEXT:  PL/Python function "madlib_keras_automl"
   INFO:  
        Time for training in iteration 2: 1072.08968186 sec
   DETAIL:  
        Training set after iteration 2:
        mst_key=6: metric=0.435039997101, loss=1.98741734028
        mst_key=10: metric=0.437579989433, loss=1.54891061783
        mst_key=9: metric=0.606719970703, loss=1.1007784605
        mst_key=7: metric=0.550220012665, loss=1.23340415955
        mst_key=8: metric=0.590960025787, loss=1.13847112656
        Validation set after iteration 2:
        mst_key=6: metric=0.424100011587, loss=2.0407743454
        mst_key=10: metric=0.438899993896, loss=1.54700648785
        mst_key=9: metric=0.595899999142, loss=1.13602638245
        mst_key=7: metric=0.544099986553, loss=1.24483549595
        mst_key=8: metric=0.583800017834, loss=1.15895962715
   CONTEXT:  PL/Python function "madlib_keras_automl"
   
   INFO:  
   Best training loss so far:
   DETAIL:  
   mst_key=4: metric=0.754859983921, loss=0.701396882534
   Best validation loss so far:
   mst_key=4: metric=0.735899984837, loss=0.765290260315
   ```


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to