[ 
https://issues.apache.org/jira/browse/MAHOUT-1286?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=13736984#comment-13736984
 ] 

Ted Dunning commented on MAHOUT-1286:
-------------------------------------

Peng,

You should be able to create a relatively efficient container structure using 
techniques such as are used in the Mahout collections library.  Essentially, 
what this does is to turn a Hashmap of structures into a columnar form.  This 
avoids essentially all of the object overhead.

More to the point, why not use a search based recommender and avoid all this 
heartache?
                
> Memory-efficient DataModel, supporting fast online updates and element-wise 
> iteration
> -------------------------------------------------------------------------------------
>
>                 Key: MAHOUT-1286
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-1286
>             Project: Mahout
>          Issue Type: Improvement
>          Components: Collaborative Filtering
>    Affects Versions: 0.9
>            Reporter: Peng Cheng
>            Assignee: Sean Owen
>   Original Estimate: 336h
>  Remaining Estimate: 336h
>
> Most DataModel implementation in current CF component use hash map to enable 
> fast 2d indexing and update. This is not memory-efficient for big data set. 
> e.g. Netflix prize dataset takes 11G heap space as a FileDataModel.
> Improved implementation of DataModel should use more compact data structure 
> (like arrays), this can trade a little of time complexity in 2d indexing for 
> vast improvement in memory efficiency. In addition, any online recommender or 
> online-to-batch converted recommender will not be affected by this in 
> training process.

--
This message is automatically generated by JIRA.
If you think it was sent incorrectly, please contact your JIRA administrators
For more information on JIRA, see: http://www.atlassian.com/software/jira

Reply via email to