[ 
https://issues.apache.org/jira/browse/MAHOUT-1450?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Pavan Kumar N updated MAHOUT-1450:
----------------------------------

    Description: 
Here are some details of the dead links:

On the k-Means clustering - basics page, 

first line of the Quickstart part of the documentation, the hyperlink "Here"

http://mahout.apache.org/users/clustering/k-means-clustering%5Equickstart-kmeans.sh.html

first sentence of Strategy for parallelization part of documentation, the 
hyperlink "Cluster computing and MapReduce", second second sentence the 
hyperlink "here" and last sentence the hyperlink 
"http://www2.chass.ncsu.edu/garson/PA765/cluster.htm"; are dead.

http://code.google.com/edu/content/submissions/mapreduce-minilecture/listing.html

http://code.google.com/edu/content/submissions/mapreduce-minilecture/lec4-clustering.ppt

http://www2.chass.ncsu.edu/garson/PA765/cluster.htm

Under the page: 
http://mahout.apache.org/users/clustering/visualizing-sample-clusters.html

in the second sentence of Pre-prep part of this page, the hyperlink "setup 
mahout" is dead.

http://mahout.apache.org/users/clustering/users/basics/quickstart.html


The existing documentation is too ambiguous and I recommend to make the 
following changes so the new users can use it as tutorial.

The Quickstart should be replaced with the following:

Get the data from:
wget 
http://www.daviddlewis.com/resources/testcollections/reuters21578/reuters21578.tar.gz

Place it within the example folder from mahout home director:
mahout-0.7/examples/reuters
mkdir reuters
cd reuters
mkdir reuters-out
mv reuters21578.tar.gz reuters-out
cd reuters-out
tar -xzvf reuters21578.tar.gz
cd ..

Mahout specific Commands

#1 run the org.apache.lucene.benchmark .utils.ExtractReuters class
${MAHOUT_HOME}/bin/mahout
org.apache.lucene.benchmark.utils.ExtractReuters reuters-out
reuters-text

#2 copy the file to your HDFS
bin/hadoop fs -copyFromLocal
/home/bigdata/mahout-distribution-0.7/examples/reuters-text
hdfs://localhost:54310/user/bigdata/

#3 generate sequence-file
mahout seqdirectory -i hdfs://localhost:54310/user/bigdata/reuters-text
-o hdfs://localhost:54310/user/bigdata/reuters-seqfiles -c UTF-8 -chunk 5
-chunk → specifying the number of data blocks
UTF-8 → specifying the appropriate input format

#4 Check the generated sequence-file
mahout-0.7$ ./bin/mahout seqdumper -i
/your-hdfs-path-to/reuters-seqfiles/chunk-0 | less

#5 From sequence-file generate vector file
mahout seq2sparse -i
hdfs://localhost:54310/user/bigdata/reuters-seqfiles -o
hdfs://localhost:54310/user/bigdata/reuters-vectors -ow
-ow → overwrite

#6 take a look at it should have 7 items by using this command
bin/hadoop fs -ls
reuters-vectors/df-count
reuters-vectors/dictionary.file-0
reuters-vectors/frequency.file-0
reuters-vectors/tf-vectors
reuters-vectors/tfidf-vectors
reuters-vectors/tokenized-documents
reuters-vectors/wordcount
bin/hadoop fs -ls reuters-vectors

#7 check the vector: reuters-vectors/tf-vectors/part-r-00000
mahout-0.7$ hadoop fs -ls reuters-vectors/tf-vectors

#8 Run canopy clustering to get optimal initial centroids for k-means
mahout canopy -i
hdfs://localhost:54310/user/bigdata/reuters-vectors/tf-vectors -o
hdfs://localhost:54310/user/bigdata/reuters-canopy-centroids -dm
org.apache.mahout.common.distance.CosineDistanceMeasure -t1 1500 -t2 2000

-dm → specifying the distance measure to be used while clustering (here it is 
cosine distance measure)

#9 Run k-means clustering algorithm
mahout kmeans -i
hdfs://localhost:54310/user/bigdata/reuters-vectors/tfidf-vectors -c
hdfs://localhost:54310/user/bigdata/reuters-canopy-centroids -o
hdfs://localhost:54310/user/bigdata/reuters-kmeans-clusters -cd 0.1 -ow
-x 20 -k 10

-i → input
-o → output
-c → initial centroids for k-means (not defining this parameter will
trigger k-means to generate random initial centroids)
-cd → convergence delta parameter
-ow → overwrite
-x → specifying number of k-means iterations
-k → specifying number of clusters

#10 Export k-means output using Cluster Dumper tool
mahout clusterdump -dt sequencefile -d 
hdfs://localhost:54310/user/bigdata/reuters-vectors/dictionary.file-*
-i hdfs://localhost:54310/user/bigdata/reuters-kmeans-clusters/clusters-8-
final -o clusters.txt -b 15

-dt → dictionary type
-b → specifying length of each word

Mahout 0.7 version did have some problems using the DisplayKmeans module which 
should ideally display the clusters in a 2d graph. But it gave me the same 
output for different input datasets. I was using dataset of recent news items 
that was crawled from various websites.

  was:
The following links are dead:

https://mahout.apache.org/users/clustering/buildingmahout#mahout_maven_eclipse.html
https://mahout.apache.org/users/clustering/K-Means%20Clustering
https://mahout.apache.org/users/clustering/Dirichlet%20Process%20Clustering
http://www2.chass.ncsu.edu/garson/PA765/cluster.htm
http://code.google.com/edu/content/submissions/mapreduce-minilecture/lec4-clustering.ppt

The existing documentation is too ambiguous and I recommend to make the 
following changes so the new users can use it as tutorial.

The Quickstart should be replaced with the following:

Get the data from:
wget 
http://www.daviddlewis.com/resources/testcollections/reuters21578/reuters21578.tar.gz

Place it within the example folder from mahout home director:
mahout-0.7/examples/reuters
mkdir reuters
cd reuters
mkdir reuters-out
mv reuters21578.tar.gz reuters-out
cd reuters-out
tar -xzvf reuters21578.tar.gz
cd ..

Mahout specific Commands

#1 run the org.apache.lucene.benchmark .utils.ExtractReuters class
${MAHOUT_HOME}/bin/mahout
org.apache.lucene.benchmark.utils.ExtractReuters reuters-out
reuters-text

#2 copy the file to your HDFS
bin/hadoop fs -copyFromLocal
/home/bigdata/mahout-distribution-0.7/examples/reuters-text
hdfs://localhost:54310/user/bigdata/

#3 generate sequence-file
mahout seqdirectory -i hdfs://localhost:54310/user/bigdata/reuters-text
-o hdfs://localhost:54310/user/bigdata/reuters-seqfiles -c UTF-8 -chunk 5
-chunk → specifying the number of data blocks
UTF-8 → specifying the appropriate input format

#4 Check the generated sequence-file
mahout-0.7$ ./bin/mahout seqdumper -i
/your-hdfs-path-to/reuters-seqfiles/chunk-0 | less

#5 From sequence-file generate vector file
mahout seq2sparse -i
hdfs://localhost:54310/user/bigdata/reuters-seqfiles -o
hdfs://localhost:54310/user/bigdata/reuters-vectors -ow
-ow → overwrite

#6 take a look at it should have 7 items by using this command
bin/hadoop fs -ls
reuters-vectors/df-count
reuters-vectors/dictionary.file-0
reuters-vectors/frequency.file-0
reuters-vectors/tf-vectors
reuters-vectors/tfidf-vectors
reuters-vectors/tokenized-documents
reuters-vectors/wordcount
bin/hadoop fs -ls reuters-vectors

#7 check the vector: reuters-vectors/tf-vectors/part-r-00000
mahout-0.7$ hadoop fs -ls reuters-vectors/tf-vectors

#8 Run canopy clustering to get optimal initial centroids for k-means
mahout canopy -i
hdfs://localhost:54310/user/bigdata/reuters-vectors/tf-vectors -o
hdfs://localhost:54310/user/bigdata/reuters-canopy-centroids -dm
org.apache.mahout.common.distance.CosineDistanceMeasure -t1 1500 -t2 2000

-dm → specifying the distance measure to be used while clustering (here it is 
cosine distance measure)

#9 Run k-means clustering algorithm
mahout kmeans -i
hdfs://localhost:54310/user/bigdata/reuters-vectors/tfidf-vectors -c
hdfs://localhost:54310/user/bigdata/reuters-canopy-centroids -o
hdfs://localhost:54310/user/bigdata/reuters-kmeans-clusters -cd 0.1 -ow
-x 20 -k 10

-i → input
-o → output
-c → initial centroids for k-means (not defining this parameter will
trigger k-means to generate random initial centroids)
-cd → convergence delta parameter
-ow → overwrite
-x → specifying number of k-means iterations
-k → specifying number of clusters

#10 Export k-means output using Cluster Dumper tool
mahout clusterdump -dt sequencefile -d 
hdfs://localhost:54310/user/bigdata/reuters-vectors/dictionary.file-*
-i hdfs://localhost:54310/user/bigdata/reuters-kmeans-clusters/clusters-8-
final -o clusters.txt -b 15

-dt → dictionary type
-b → specifying length of each word

Mahout 0.7 version did have some problems using the DisplayKmeans module which 
should ideally display the clusters in a 2d graph. But it gave me the same 
output for different input datasets. I was using dataset of recent news items 
that was crawled from various websites.


> Cleaning up k-means documentation on mahout website 
> ----------------------------------------------------
>
>                 Key: MAHOUT-1450
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-1450
>             Project: Mahout
>          Issue Type: Documentation
>          Components: Documentation
>         Environment: This affects all mahout versions
>            Reporter: Pavan Kumar N
>              Labels: documentation, newbie
>             Fix For: 1.0
>
>
> Here are some details of the dead links:
> On the k-Means clustering - basics page, 
> first line of the Quickstart part of the documentation, the hyperlink "Here"
> http://mahout.apache.org/users/clustering/k-means-clustering%5Equickstart-kmeans.sh.html
> first sentence of Strategy for parallelization part of documentation, the 
> hyperlink "Cluster computing and MapReduce", second second sentence the 
> hyperlink "here" and last sentence the hyperlink 
> "http://www2.chass.ncsu.edu/garson/PA765/cluster.htm"; are dead.
> http://code.google.com/edu/content/submissions/mapreduce-minilecture/listing.html
> http://code.google.com/edu/content/submissions/mapreduce-minilecture/lec4-clustering.ppt
> http://www2.chass.ncsu.edu/garson/PA765/cluster.htm
> Under the page: 
> http://mahout.apache.org/users/clustering/visualizing-sample-clusters.html
> in the second sentence of Pre-prep part of this page, the hyperlink "setup 
> mahout" is dead.
> http://mahout.apache.org/users/clustering/users/basics/quickstart.html
> The existing documentation is too ambiguous and I recommend to make the 
> following changes so the new users can use it as tutorial.
> The Quickstart should be replaced with the following:
> Get the data from:
> wget 
> http://www.daviddlewis.com/resources/testcollections/reuters21578/reuters21578.tar.gz
> Place it within the example folder from mahout home director:
> mahout-0.7/examples/reuters
> mkdir reuters
> cd reuters
> mkdir reuters-out
> mv reuters21578.tar.gz reuters-out
> cd reuters-out
> tar -xzvf reuters21578.tar.gz
> cd ..
> Mahout specific Commands
> #1 run the org.apache.lucene.benchmark .utils.ExtractReuters class
> ${MAHOUT_HOME}/bin/mahout
> org.apache.lucene.benchmark.utils.ExtractReuters reuters-out
> reuters-text
> #2 copy the file to your HDFS
> bin/hadoop fs -copyFromLocal
> /home/bigdata/mahout-distribution-0.7/examples/reuters-text
> hdfs://localhost:54310/user/bigdata/
> #3 generate sequence-file
> mahout seqdirectory -i hdfs://localhost:54310/user/bigdata/reuters-text
> -o hdfs://localhost:54310/user/bigdata/reuters-seqfiles -c UTF-8 -chunk 5
> -chunk → specifying the number of data blocks
> UTF-8 → specifying the appropriate input format
> #4 Check the generated sequence-file
> mahout-0.7$ ./bin/mahout seqdumper -i
> /your-hdfs-path-to/reuters-seqfiles/chunk-0 | less
> #5 From sequence-file generate vector file
> mahout seq2sparse -i
> hdfs://localhost:54310/user/bigdata/reuters-seqfiles -o
> hdfs://localhost:54310/user/bigdata/reuters-vectors -ow
> -ow → overwrite
> #6 take a look at it should have 7 items by using this command
> bin/hadoop fs -ls
> reuters-vectors/df-count
> reuters-vectors/dictionary.file-0
> reuters-vectors/frequency.file-0
> reuters-vectors/tf-vectors
> reuters-vectors/tfidf-vectors
> reuters-vectors/tokenized-documents
> reuters-vectors/wordcount
> bin/hadoop fs -ls reuters-vectors
> #7 check the vector: reuters-vectors/tf-vectors/part-r-00000
> mahout-0.7$ hadoop fs -ls reuters-vectors/tf-vectors
> #8 Run canopy clustering to get optimal initial centroids for k-means
> mahout canopy -i
> hdfs://localhost:54310/user/bigdata/reuters-vectors/tf-vectors -o
> hdfs://localhost:54310/user/bigdata/reuters-canopy-centroids -dm
> org.apache.mahout.common.distance.CosineDistanceMeasure -t1 1500 -t2 2000
> -dm → specifying the distance measure to be used while clustering (here it is 
> cosine distance measure)
> #9 Run k-means clustering algorithm
> mahout kmeans -i
> hdfs://localhost:54310/user/bigdata/reuters-vectors/tfidf-vectors -c
> hdfs://localhost:54310/user/bigdata/reuters-canopy-centroids -o
> hdfs://localhost:54310/user/bigdata/reuters-kmeans-clusters -cd 0.1 -ow
> -x 20 -k 10
> -i → input
> -o → output
> -c → initial centroids for k-means (not defining this parameter will
> trigger k-means to generate random initial centroids)
> -cd → convergence delta parameter
> -ow → overwrite
> -x → specifying number of k-means iterations
> -k → specifying number of clusters
> #10 Export k-means output using Cluster Dumper tool
> mahout clusterdump -dt sequencefile -d 
> hdfs://localhost:54310/user/bigdata/reuters-vectors/dictionary.file-*
> -i hdfs://localhost:54310/user/bigdata/reuters-kmeans-clusters/clusters-8-
> final -o clusters.txt -b 15
> -dt → dictionary type
> -b → specifying length of each word
> Mahout 0.7 version did have some problems using the DisplayKmeans module 
> which should ideally display the clusters in a 2d graph. But it gave me the 
> same output for different input datasets. I was using dataset of recent news 
> items that was crawled from various websites.



--
This message was sent by Atlassian JIRA
(v6.2#6252)

Reply via email to