viiccwen commented on code in PR #814:
URL: https://github.com/apache/mahout/pull/814#discussion_r2719912974
##########
qdp/qdp-python/src/lib.rs:
##########
@@ -358,237 +424,264 @@ impl QdpEngine {
// Check if it's a NumPy array
if data.hasattr("__array_interface__")? {
- // Get the array's ndim for shape validation
- let ndim: usize = data.getattr("ndim")?.extract()?;
-
- match ndim {
- 1 => {
- // 1D array: single sample encoding (zero-copy if already
contiguous)
- let array_1d =
data.extract::<PyReadonlyArray1<f64>>().map_err(|_| {
- PyRuntimeError::new_err(
- "Failed to extract 1D NumPy array. Ensure dtype is
float64.",
- )
- })?;
- let data_slice = array_1d.as_slice().map_err(|_| {
- PyRuntimeError::new_err("NumPy array must be
contiguous (C-order)")
- })?;
- let ptr = self
- .engine
- .encode(data_slice, num_qubits, encoding_method)
- .map_err(|e| PyRuntimeError::new_err(format!("Encoding
failed: {}", e)))?;
- return Ok(QuantumTensor {
- ptr,
- consumed: false,
- });
- }
- 2 => {
- // 2D array: batch encoding (zero-copy if already
contiguous)
- let array_2d =
data.extract::<PyReadonlyArray2<f64>>().map_err(|_| {
- PyRuntimeError::new_err(
- "Failed to extract 2D NumPy array. Ensure dtype is
float64.",
- )
- })?;
- let shape = array_2d.shape();
- let num_samples = shape[0];
- let sample_size = shape[1];
- let data_slice = array_2d.as_slice().map_err(|_| {
- PyRuntimeError::new_err("NumPy array must be
contiguous (C-order)")
- })?;
- let ptr = self
- .engine
- .encode_batch(
- data_slice,
- num_samples,
- sample_size,
- num_qubits,
- encoding_method,
- )
- .map_err(|e| PyRuntimeError::new_err(format!("Encoding
failed: {}", e)))?;
- return Ok(QuantumTensor {
- ptr,
- consumed: false,
- });
- }
- _ => {
- return Err(PyRuntimeError::new_err(format!(
- "Unsupported array shape: {}D. Expected 1D array for
single sample \
- encoding or 2D array (batch_size, features) for batch
encoding.",
- ndim
- )));
- }
- }
+ return self.encode_from_numpy(data, num_qubits, encoding_method);
}
// Check if it's a PyTorch tensor
if is_pytorch_tensor(data)? {
- // Check if it's a CUDA tensor - use zero-copy GPU encoding
- if is_cuda_tensor(data)? {
- // Validate CUDA tensor for direct GPU encoding
- validate_cuda_tensor_for_encoding(
- data,
- self.engine.device().ordinal(),
- encoding_method,
- )?;
-
- // Extract GPU pointer directly from PyTorch tensor
- let tensor_info = extract_cuda_tensor_info(data)?;
-
- let ndim: usize = data.call_method0("dim")?.extract()?;
-
- match ndim {
- 1 => {
- // 1D CUDA tensor: single sample encoding
- let input_len = tensor_info.shape[0] as usize;
- // SAFETY: tensor_info.data_ptr was obtained via
PyTorch's data_ptr() from a
- // valid CUDA tensor. The tensor remains alive during
this call
- // (held by Python's GIL), and we validated
dtype/contiguity/device above.
- let ptr = unsafe {
- self.engine
- .encode_from_gpu_ptr(
- tensor_info.data_ptr,
- input_len,
- num_qubits,
- encoding_method,
- )
- .map_err(|e| {
- PyRuntimeError::new_err(format!("Encoding
failed: {}", e))
- })?
- };
- return Ok(QuantumTensor {
- ptr,
- consumed: false,
- });
- }
- 2 => {
- // 2D CUDA tensor: batch encoding
- let num_samples = tensor_info.shape[0] as usize;
- let sample_size = tensor_info.shape[1] as usize;
- // SAFETY: Same as above - pointer from validated
PyTorch CUDA tensor
- let ptr = unsafe {
- self.engine
- .encode_batch_from_gpu_ptr(
- tensor_info.data_ptr,
- num_samples,
- sample_size,
- num_qubits,
- encoding_method,
- )
- .map_err(|e| {
- PyRuntimeError::new_err(format!("Encoding
failed: {}", e))
- })?
- };
- return Ok(QuantumTensor {
- ptr,
- consumed: false,
- });
- }
- _ => {
- return Err(PyRuntimeError::new_err(format!(
- "Unsupported CUDA tensor shape: {}D. Expected 1D
tensor for single \
- sample encoding or 2D tensor (batch_size,
features) for batch encoding.",
- ndim
- )));
- }
- }
- }
+ return self.encode_from_pytorch(data, num_qubits, encoding_method);
+ }
- // CPU tensor path (existing code)
- validate_tensor(data)?;
- // PERF: Avoid Tensor -> Python list -> Vec deep copies.
- //
- // For CPU tensors, `tensor.detach().numpy()` returns a NumPy view
that shares the same
- // underlying memory (zero-copy) when the tensor is C-contiguous.
We can then borrow a
- // `&[f64]` directly via pyo3-numpy.
- let ndim: usize = data.call_method0("dim")?.extract()?;
- let numpy_view = data
- .call_method0("detach")?
- .call_method0("numpy")
- .map_err(|_| {
+ // Fallback: try to extract as Vec<f64> (Python list)
+ self.encode_from_list(data, num_qubits, encoding_method)
+ }
+
+ /// Encode from NumPy array (1D or 2D)
+ fn encode_from_numpy(
Review Comment:
Thx for pointing out!
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]