Github user markap14 commented on a diff in the pull request: https://github.com/apache/nifi/pull/158#discussion_r50575812 --- Diff: nifi-nar-bundles/nifi-kite-bundle/nifi-kite-processors/src/main/java/org/apache/nifi/processors/kite/InferAvroSchema.java --- @@ -0,0 +1,454 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ +package org.apache.nifi.processors.kite; + +import org.apache.avro.Schema; +import org.apache.commons.io.IOUtils; +import org.apache.commons.lang.StringUtils; +import org.apache.nifi.annotation.behavior.*; +import org.apache.nifi.annotation.documentation.CapabilityDescription; +import org.apache.nifi.annotation.documentation.Tags; +import org.apache.nifi.components.PropertyDescriptor; +import org.apache.nifi.flowfile.FlowFile; +import org.apache.nifi.flowfile.attributes.CoreAttributes; +import org.apache.nifi.processor.ProcessContext; +import org.apache.nifi.processor.ProcessSession; +import org.apache.nifi.processor.ProcessorInitializationContext; +import org.apache.nifi.processor.Relationship; +import org.apache.nifi.processor.exception.ProcessException; +import org.apache.nifi.processor.io.InputStreamCallback; +import org.apache.nifi.processor.io.OutputStreamCallback; +import org.apache.nifi.processor.util.StandardValidators; +import org.kitesdk.data.spi.JsonUtil; +import org.kitesdk.data.spi.filesystem.CSVProperties; +import org.kitesdk.data.spi.filesystem.CSVUtil; +import org.kitesdk.shaded.com.google.common.collect.ImmutableSet; +import org.omg.CORBA.OBJ_ADAPTER; + + +import java.io.*; +import java.util.List; +import java.util.ArrayList; +import java.util.Set; +import java.util.HashSet; +import java.util.Collections; +import java.util.concurrent.atomic.AtomicReference; + +@Tags({"kite", "avro", "infer", "schema", "csv", "json"}) +@InputRequirement(InputRequirement.Requirement.INPUT_REQUIRED) +@CapabilityDescription("Examines the contents of the incoming FlowFile to infer an Avro schema. The processor will" + + " use the Kite SDK to make an attempt to automatically generate an Avro schema from the incoming content." + + " When inferring the schema from JSON data the key names will be used in the resulting Avro schema" + + " definition. When inferring from CSV data a \"header definition\" must be present either as the first line of the incoming data" + + " or the \"header definition\" must be explicitly set in the property \"CSV Header Definition\". A \"header definition\"" + + " is simply a single comma separated line defining the names of each column. The \"header definition\" is" + + " required in order to determine the names that should be given to each field in the resulting Avro definition." + + " When inferring data types the higher order data type is always used if there is ambiguity." + + " For example when examining numerical values the type may be set to \"long\" instead of \"integer\" since a long can" + + " safely hold the value of any \"integer\". Only CSV and JSON content is currently supported for automatically inferring an" + + " Avro schema. The type of content present in the incoming FlowFile is set by using the property \"Input Content Type\"." + + " The property can either be explicitly set to CSV, JSON, or \"use mime.type value\" which will examine the" + + " value of the mime.type attribute on the incoming FlowFile to determine the type of content present.") +@ReadsAttributes({ + @ReadsAttribute(attribute = "mime.type", description = "If configured by property \"Input Content Type\" will" + + " use this value to determine what sort of content should be inferred from the incoming FlowFile content."), +}) +@WritesAttributes({ + @WritesAttribute(attribute = "inferred.avro.schema", description = "If configured by \"Schema output destination\" to" + + " write to an attribute this will hold the resulting Avro schema from inferring the incoming FlowFile content."), +}) +public class InferAvroSchema + extends AbstractKiteProcessor { + + public static final String CSV_DELIMITER = ","; + public static final String USE_MIME_TYPE = "use mime.type value"; + public static final String JSON_CONTENT = "json"; + public static final String CSV_CONTENT = "csv"; + + public static final String AVRO_SCHEMA_ATTRIBUTE_NAME = "inferred.avro.schema"; + public static final String DESTINATION_ATTRIBUTE = "flowfile-attribute"; + public static final String DESTINATION_CONTENT = "flowfile-content"; + public static final String JSON_MIME_TYPE = "application/json"; + public static final String CSV_MIME_TYPE = "text/csv"; + public static final String AVRO_MIME_TYPE = "application/avro-binary"; + public static final String AVRO_FILE_EXTENSION = ".avro"; + + public static final PropertyDescriptor SCHEMA_DESTINATION = new PropertyDescriptor.Builder() + .name("Schema output destination") + .description("Control if Avro schema is written as a new flowfile attribute '" + AVRO_SCHEMA_ATTRIBUTE_NAME + "' " + + "or written in the flowfile content. Writing to flowfile content will overwrite any " + + "existing flowfile content.") + .required(true) + .allowableValues(DESTINATION_ATTRIBUTE, DESTINATION_CONTENT) + .defaultValue(DESTINATION_CONTENT) + .addValidator(StandardValidators.NON_EMPTY_VALIDATOR) + .build(); + + public static final PropertyDescriptor INPUT_CONTENT_TYPE = new PropertyDescriptor.Builder() + .name("Input Content Type") + .description("Content Type of data present in the incoming FlowFile's content. Only \"" + + JSON_CONTENT + "\" or \"" + CSV_CONTENT + "\" are supported." + + " If this value is set to \"" + USE_MIME_TYPE + "\" the incoming Flowfile's attribute \"" + CoreAttributes.MIME_TYPE + "\"" + + " will be used to determine the Content Type.") + .allowableValues(USE_MIME_TYPE, JSON_CONTENT, CSV_CONTENT) + .defaultValue(USE_MIME_TYPE) + .required(true) + .addValidator(StandardValidators.NON_EMPTY_VALIDATOR) + .build(); + + public static final PropertyDescriptor GET_CSV_HEADER_DEFINITION_FROM_INPUT = new PropertyDescriptor.Builder() + .name("Get CSV header definition from data") + .description("This property only applies to CSV content type. If \"true\" the processor will attempt to read the CSV header definition from the ") + .required(true) + .allowableValues("true", "false") + .defaultValue("true") + .addValidator(StandardValidators.BOOLEAN_VALIDATOR) + .build(); + + public static final PropertyDescriptor CSV_HEADER_DEFINITION = new PropertyDescriptor.Builder() + .name("CSV Header Definition") + .description("This property only applies to CSV content type. Comma separated string defining the column names expected in the CSV data." + + " EX: \"fname,lname,zip,address\". The elements present in this string should be in the same order" + + " as the underlying data. Setting this property will cause the value of" + + " \"" + GET_CSV_HEADER_DEFINITION_FROM_INPUT.getName() + "\" to be ignored instead using this value.") + .required(false) + .expressionLanguageSupported(true) + .defaultValue(null) + .addValidator(StandardValidators.NON_EMPTY_VALIDATOR) + .build(); + + + public static final PropertyDescriptor HEADER_LINE_SKIP_COUNT = new PropertyDescriptor.Builder() + .name("CSV Header Line Skip Count") + .description("This property only applies to CSV content type. Specifies the number of lines that should be skipped when reading the CSV data." + + " Setting this value to 0 is equivalent to saying \"the entire contents of the file should be read\". If the" + + " property \"" + GET_CSV_HEADER_DEFINITION_FROM_INPUT.getName() + "\" is set then the first line of the CSV " + + " file will be read in and treated as the CSV header definition. Since this will remove the header line from the data" + + " care should be taken to make sure the value of \"CSV header Line Skip Count\" is set to 0 to ensure" + + " no data is skipped.") + .required(true) + .defaultValue("0") + .expressionLanguageSupported(true) + .addValidator(StandardValidators.NON_NEGATIVE_INTEGER_VALIDATOR) + .build(); + + public static final PropertyDescriptor ESCAPE_STRING = new PropertyDescriptor.Builder() + .name("CSV escape string") + .description("This property only applies to CSV content type. String that represents an escape sequence" + + " in the CSV FlowFile content data.") + .required(true) + .defaultValue("\\") + .expressionLanguageSupported(true) + .addValidator(StandardValidators.NON_EMPTY_VALIDATOR) + .build(); + + public static final PropertyDescriptor QUOTE_STRING = new PropertyDescriptor.Builder() + .name("CSV quote string") + .description("This property only applies to CSV content type. String that represents a literal quote" + + " character in the CSV FlowFile content data.") + .required(true) + .defaultValue("'") + .expressionLanguageSupported(true) + .addValidator(StandardValidators.NON_EMPTY_VALIDATOR) + .build(); + + public static final PropertyDescriptor RECORD_NAME = new PropertyDescriptor.Builder() + .name("Avro Record Name") + .description("Value to be placed in the Avro record schema \"name\" field.") + .required(true) + .expressionLanguageSupported(true) + .addValidator(StandardValidators.NON_EMPTY_VALIDATOR) + .build(); + + public static final PropertyDescriptor CHARSET = new PropertyDescriptor.Builder() + .name("Charset") + .description("Character encoding of CSV data.") + .required(true) + .defaultValue("UTF-8") + .addValidator(StandardValidators.CHARACTER_SET_VALIDATOR) + .build(); + + public static final PropertyDescriptor PRETTY_AVRO_OUTPUT = new PropertyDescriptor.Builder() + .name("Pretty Avro Output") + .description("If true the Avro output will be formatted.") + .required(true) + .defaultValue("true") + .allowableValues("true", "false") + .addValidator(StandardValidators.BOOLEAN_VALIDATOR) + .build(); + + public static final PropertyDescriptor NUM_RECORDS_TO_ANALYZE = new PropertyDescriptor.Builder() + .name("Number of records to analyze") + .description("This property only applies to JSON content type. The number of JSON records that should be" + + " examined to determine the Avro schema. The higher the value the better chance kite has of detecting" + + " the appropriate type. However the default value of 10 is almost always enough.") + .required(true) + .defaultValue("10") + .expressionLanguageSupported(true) + .addValidator(StandardValidators.NON_NEGATIVE_INTEGER_VALIDATOR) + .build(); + + + public static final Relationship REL_SUCCESS = new Relationship.Builder().name("success") + .description("Successfully created Avro schema for CSV data.").build(); + + public static final Relationship REL_ORIGINAL = new Relationship.Builder().name("original") + .description("Original incoming FlowFile CSV data").build(); + + public static final Relationship REL_FAILURE = new Relationship.Builder().name("failure") + .description("Failed to create Avro schema for CSV data.").build(); + + public static final Relationship REL_UNSUPPORTED_CONTENT = new Relationship.Builder().name("unsupported content") + .description("The content found in the flowfile content is not of the required format.").build(); + + private List<PropertyDescriptor> properties; + private Set<Relationship> relationships; + + @Override + protected void init(final ProcessorInitializationContext context) { + final List<PropertyDescriptor> properties = new ArrayList<>(); + properties.add(SCHEMA_DESTINATION); + properties.add(INPUT_CONTENT_TYPE); + properties.add(CSV_HEADER_DEFINITION); + properties.add(GET_CSV_HEADER_DEFINITION_FROM_INPUT); + properties.add(HEADER_LINE_SKIP_COUNT); + properties.add(ESCAPE_STRING); + properties.add(QUOTE_STRING); + properties.add(PRETTY_AVRO_OUTPUT); + properties.add(RECORD_NAME); + properties.add(NUM_RECORDS_TO_ANALYZE); + properties.add(CHARSET); + this.properties = Collections.unmodifiableList(properties); + + final Set<Relationship> relationships = new HashSet<>(); + relationships.add(REL_SUCCESS); + relationships.add(REL_FAILURE); + relationships.add(REL_ORIGINAL); + relationships.add(REL_UNSUPPORTED_CONTENT); + this.relationships = Collections.unmodifiableSet(relationships); + } + + @Override + protected List<PropertyDescriptor> getSupportedPropertyDescriptors() { + return properties; + } + + @Override + public Set<Relationship> getRelationships() { + return relationships; + } + + + @Override + public void onTrigger(final ProcessContext context, final ProcessSession session) throws ProcessException { + final FlowFile original = session.get(); + if (original == null) { + return; + } + + try { + + final AtomicReference<String> avroSchema = new AtomicReference<>(); + switch (context.getProperty(INPUT_CONTENT_TYPE).getValue()) { + case USE_MIME_TYPE: + avroSchema.set(inferAvroSchemaFromMimeType(original, context, session).get()); + break; + case JSON_CONTENT: + avroSchema.set(inferAvroSchemaFromJSON(original, context, session).get()); + break; + case CSV_CONTENT: + avroSchema.set(inferAvroSchemaFromCSV(original, context, session).get()); + break; + default: + //Shouldn't be possible but just in case + session.transfer(original, REL_UNSUPPORTED_CONTENT); + break; + } + + + if (StringUtils.isNotEmpty(avroSchema.get())) { + + String destination = context.getProperty(SCHEMA_DESTINATION).getValue(); + FlowFile avroSchemaFF = null; + + switch (destination) { + case DESTINATION_ATTRIBUTE: + avroSchemaFF = session.putAttribute(session.clone(original), AVRO_SCHEMA_ATTRIBUTE_NAME, avroSchema.get()); + //Leaves the original CoreAttributes.MIME_TYPE in place. + break; + case DESTINATION_CONTENT: + avroSchemaFF = session.write(session.create(), new OutputStreamCallback() { + @Override + public void process(OutputStream out) throws IOException { + out.write(avroSchema.get().getBytes()); + } + }); + avroSchemaFF = session.putAttribute(avroSchemaFF, CoreAttributes.MIME_TYPE.key(), AVRO_MIME_TYPE); + break; + default: + break; + } + + //Transfer the sessions. + avroSchemaFF = session.putAttribute(avroSchemaFF, CoreAttributes.FILENAME.key(), (original.getAttribute(CoreAttributes.FILENAME.key()) + AVRO_FILE_EXTENSION)); + session.transfer(avroSchemaFF, REL_SUCCESS); + } else { + //If the avroSchema is null then the content type is unknown and therefore unsupported + session.transfer(session.clone(original), REL_UNSUPPORTED_CONTENT); + } + + session.transfer(original, REL_ORIGINAL); + + } catch (Exception ex) { + getLogger().error("Failed to infer Avro schema! {}", ex); + session.transfer(original, REL_FAILURE); + } + } + + + /** + * Infers the Avro schema from the input Flowfile content. To infer an Avro schema for CSV content a header line is + * required. You can configure the processor to pull that header line from the first line of the CSV data if it is + * present OR you can manually supply the desired header line as a property value. + * + * @param inputFlowFile + * The original input FlowFile containing the CSV content as it entered this processor. + * + * @param context + * ProcessContext to pull processor configurations. + * + * @param session + * ProcessSession to transfer FlowFiles + */ + private AtomicReference<String> inferAvroSchemaFromCSV(final FlowFile inputFlowFile, final ProcessContext context, final ProcessSession session) { --- End diff -- Why are we returning AtomicReference<String> instead of just String here? It appears that when we get the value above, we immediately just call get() on it
--- If your project is set up for it, you can reply to this email and have your reply appear on GitHub as well. If your project does not have this feature enabled and wishes so, or if the feature is enabled but not working, please contact infrastructure at infrastruct...@apache.org or file a JIRA ticket with INFRA. ---