Rajeshbabu Chintaguntla created PHOENIX-1734:
------------------------------------------------

             Summary: Local index improvements
                 Key: PHOENIX-1734
                 URL: https://issues.apache.org/jira/browse/PHOENIX-1734
             Project: Phoenix
          Issue Type: Improvement
            Reporter: Rajeshbabu Chintaguntla


Local index design considerations: 
 1. Colocation: We need to co-locate regions of local index regions and data 
regions. The co-location can be a hard guarantee or a soft (best approach) 
guarantee. The co-location is a performance requirement, and also maybe needed 
for consistency(2). Hard co-location means that either both the data region and 
index region are opened atomically, or neither of them open for serving. 
 2. Index consistency : Ideally we want the index region and data region to 
have atomic updates. This means that they should either (a)use transactions, or 
they should (b)share the same WALEdit and also MVCC for visibility. (b) is only 
applicable if there is hard colocation guarantee. 
 3. Local index clients : How the local index will be accessed from clients. In 
case of the local index being managed in a table, the HBase client can be used 
for doing scans, etc. If the local index is hidden inside the data regions, 
there has to be a different mechanism to access the data through the data 
region. 

With the above considerations, we imagine three possible implementation for the 
local index solution, each detailed below. 


APPROACH 1:  Current approach
(1) Current approach uses balancer as a soft guarantee. Because of this, in 
some rare cases, colocation might not happen. 
(2) The index and data regions do not share the same WALEdits. Meaning 
consistency cannot be achieved. Also there are two WAL writes per write from 
client. 
(3) Regular Hbase client can be used to access index data since index is just 
another table. 

APPROACH 2: Shadow regions + shared WAL & MVCC 
(1) Introduce a shadow regions concept in HBase. Shadow regions are not 
assigned by AM. Phoenix implements atomic open (and split/merge) of region 
opening for data regions and index regions so that hard co-location is 
guaranteed. 
(2) For consistency requirements, the index regions and data regions will share 
the same WALEdit (and thus recovery) and they will also share the same MVCC 
mechanics so that index update and data update is visible atomically. 
(3) Regular Hbase client can be used to access index data since index is just 
another table.  

APPROACH 3: Storing index data in separate column families in the table.
 (1) Regions will have store files for cfs, which is sorted using the primary 
sort order. Regions may also maintain stores, sorted in secondary sort orders. 
This approach is similar in vein how a RDBMS keeps data (a B-TREE in primary 
sort order and multiple B-TREEs in secondary sort orders with pointers to 
primary key). That means store the index data in separate column families in 
the data region. This way a region is extended to be more similar to a RDBMS 
(but LSM instead of BTree). This is sometimes called shadow cf’s as well. This 
approach guarantees hard co-location.
 (2) Since everything is in a single region, they automatically share the same 
WALEdit and MVCC numbers. Atomicity is easily achieved. 
 (3) Current Phoenix implementation need to change in such a way that column 
families selection in read/write path is based data table/index table(logical 
table in phoenix). 

I think that APPROACH 3 is the best one for long term, since it does not 
require to change anything in HBase, mainly we don't need to muck around with 
the split/merge stuff in HBase. It will be win-win.

However, APPROACH 2 still needs a “shadow regions” concept to be implemented in 
HBase itself, and also a way to share WALEdits and MVCCs from multiple regions.
APPROACH 1 is a good start for local indexes, but I think we are not getting 
the full benefits for the feature. We can support this for the short term, and 
decide on the next steps for a longer term implementation. 
we won't be able to get to implementing it immediately, and want to start a 
brainstorm.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to