[
https://issues.apache.org/jira/browse/PHOENIX-4466?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16296430#comment-16296430
]
Toshihiro Suzuki commented on PHOENIX-4466:
-------------------------------------------
[~elserj]
{quote}
That's strange. I'm just surprised how the Avatica relocation would have
'fixed' whatever issue we saw with hadoop-common. IMO, I can't think of a
reason why to not shade hadoop-common.
{quote}
The first problem is Avatica protocol mismatch between queryserver and
thin-client caused by Avatica jar conflict between phoenix-thin-client jar and
spark-assembly jar (In HDP-2.6.3, phoenix-thin-client jar depends on
calcite-avatica-1.8.0.2.6.1.0 and spark-assembly jar depends on
calcite-avatica-1.2.0-incubating.) And according to the output of spark-shell
with -verbose:class, it seemed like Avatica classes from spark-assembly jar
(1.2.0-incubating) were used.
To resolve this issue, I think we need to relocate only Avatica (except
protobuf package due to a limitation in the Avatica protocol,) and this can
make Avatica classes from phoenix-thin-client jar be used.
If I'm wrong, please correct me.
{quote}
My only other concern is "how do we know if this works?". I'm not sure how much
work it would be to get a spark environment up in an IT to verify that we can
use PQS+thin-client...
{quote}
Yes, that's what I was thinking. It is hard to write unit test code or
integration test code for this issue. When I tested the patch in my env, it
looked good to me.
> java.lang.RuntimeException: response code 500 - Executing a spark job to
> connect to phoenix query server and load data
> ----------------------------------------------------------------------------------------------------------------------
>
> Key: PHOENIX-4466
> URL: https://issues.apache.org/jira/browse/PHOENIX-4466
> Project: Phoenix
> Issue Type: Bug
> Environment: HDP-2.6.3
> Reporter: Toshihiro Suzuki
> Assignee: Toshihiro Suzuki
> Priority: Minor
> Attachments: PHOENIX-4466.patch
>
>
> Steps to reproduce are as follows:
> 1. Start spark shell with
> {code}
> spark-shell --jars /usr/hdp/current/phoenix-client/phoenix-thin-client.jar
> {code}
> 2. Ran the following to load data
> {code}
> scala> val query =
> sqlContext.read.format("jdbc").option("driver","org.apache.phoenix.queryserver.client.Driver").option("url","jdbc:phoenix:thin:url=http://<phoenix
> query server
> hostname>:8765;serialization=PROTOBUF").option("dbtable","<table name>").load
> {code}
> This failed with the following exception
> {code:java}
> java.sql.SQLException: While closing connection
> at org.apache.calcite.avatica.Helper.createException(Helper.java:39)
> at
> org.apache.calcite.avatica.AvaticaConnection.close(AvaticaConnection.java:156)
> at
> org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:153)
> at
> org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation.<init>(JDBCRelation.scala:91)
> at
> org.apache.spark.sql.execution.datasources.jdbc.DefaultSource.createRelation(DefaultSource.scala:57)
> at
> org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:158)
> at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:119)
> at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:25)
> at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:30)
> at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:32)
> at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:34)
> at $iwC$$iwC$$iwC$$iwC.<init>(<console>:36)
> at $iwC$$iwC$$iwC.<init>(<console>:38)
> at $iwC$$iwC.<init>(<console>:40)
> at $iwC.<init>(<console>:42)
> at <init>(<console>:44)
> at .<init>(<console>:48)
> at .<clinit>(<console>)
> at .<init>(<console>:7)
> at .<clinit>(<console>)
> at $print(<console>)
> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:498)
> at
> org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
> at
> org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1346)
> at
> org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
> at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
> at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
> at
> org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
> at
> org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
> at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
> at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
> at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
> at
> org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
> at
> org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
> at
> scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
> at
> org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
> at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
> at org.apache.spark.repl.Main$.main(Main.scala:31)
> at org.apache.spark.repl.Main.main(Main.scala)
> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
> at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:498)
> at
> org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:750)
> at
> org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
> at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
> at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
> at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
> Caused by: java.lang.RuntimeException: response code 500
> at
> org.apache.calcite.avatica.remote.RemoteService.apply(RemoteService.java:45)
> at
> org.apache.calcite.avatica.remote.JsonService.apply(JsonService.java:227)
> at
> org.apache.calcite.avatica.remote.RemoteMeta.closeConnection(RemoteMeta.java:78)
> at
> org.apache.calcite.avatica.AvaticaConnection.close(AvaticaConnection.java:153)
> ... 51 more
> {code}
--
This message was sent by Atlassian JIRA
(v6.4.14#64029)