nudles commented on issue #696:
URL: https://github.com/apache/singa/issues/696#issuecomment-628483159
Shall we go with the following APIs?
@joddiy @dcslin @XJDKC
They should be compatible with the current APIs.
```python
class Module:
def compile(self, inputs, is_train, use_graph, graph_alg):
set train, graph etc config
turn off graph
if inputs are not filled, print warnings and fill inputs according
to data type.
self.forward(*inputs)
def load(self, ckp_path, include_state=False):
load onnx model and copy the params to each layer;
generate warnings for mismatched layers/params.
restore the states and return it as a dict
def save(self, ckp_path, state={}):
save the model as onnx format
save the states
def forward(self, x): # turn on graph if necessary
pass
def train_one_batch(self, x, y): # turn on graph if necessary
pass
@deprecated
def loss(self, ):
pass
@deprecated
def optim(self,):
pass
class Layer:
def __init__(name=None):
self.init = False
def __call__(self, x):
if self.init == False:
init layer states
else:
# do the forward propagation
class MyLayer(Layer):
def __init__(self):
self.layer1 = layer.Conv2d(nb_kernels = 32, kernel=3, stride=1,
padding=0, kernel_init='he_uniform')
self.layer2 = layer.MaxPool2d(kernel=3, stride=2)
def forward(self, x):
return self.layer2(self.layer1(x))
class MyModule(Module):
def __init__(self):
self.blk1 = MyLayer()
self.blk2 = MyLayer()
self.optim = SGD()
self.loss = CrossEntropyLoss()
def forward(self, x):
return self.blk2(self.blk1(x))
def train_one_batch(self, x, y):
y_ = self.forward(x)
l = self.loss(y_, y)
self.optim.backward_and_update(l)
return l
x = Placeholder((2, 3), device = gpu, dtype=singa.float) # alias of Tensor
fill x with values
m = MyModel()
# compatible with existing code which does not have the following two
statements.
m.compile([x], is_train=True, use_graph=True, graph_alg='sequence')
for pname, ptensor in m.get_params():
ptensor.uniform(-1, 1) # not necessary if each layer's param init
methods are configured.
y = Placeholder((2,), device = gpu)
for npx, npy in data:
x.copy_from(npx)
y.copy_from(npy)
m.train_one_batch(x, y) # build the graph in the first iter. For the
old code, the params are initialized here.
m.save('mymodel', state={'epoch': data.size(), 'sgd': m.optim}
```
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]