[ https://issues.apache.org/jira/browse/SINGA-444?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
thao p nguyen resolved SINGA-444. --------------------------------- Resolution: Fixed > Can not run Model classes examples on Singa documentation > --------------------------------------------------------- > > Key: SINGA-444 > URL: https://issues.apache.org/jira/browse/SINGA-444 > Project: Singa > Issue Type: Bug > Components: Documentation > Environment: - python 3.6.8 > - Ubuntu 18.10 > Reporter: thao p nguyen > Priority: Critical > > Following the Singa documentation, the API code for running models' example > does not work. Below are messages: > 1) FeedForward Net > >>> from singa import tensor > >>> from singa import loss > >>> x = tensor.Tensor((3, 5)) > >>> x.uniform(0, 1) # randomly genearte the prediction activation > >>> y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int)) # set the truth > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > NameError: name 'np' is not defined > >>> f = loss.SoftmaxCrossEntropy() > >>> l = f.forward(True, x, y) # l is tensor with 3 loss values > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > NameError: name 'y' is not defined > >>> g = f.backward() # g is a tensor containing all gradients of x w.r.t l > Segmentation fault (core dumped) > 2) Loss > >>> from singa import tensor > >>> from singa import loss > >>> > >>> x = tensor.Tensor((3, 5)) > >>> x.uniform(0, 1) # randomly genearte the prediction activation > >>> y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int)) # set the truth > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > NameError: name 'np' is not defined > >>> > >>> f = loss.SoftmaxCrossEntropy() > >>> l = f.forward(True, x, y) # l is tensor with 3 loss values > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > NameError: name 'y' is not defined > >>> g = f.backward() # g is a tensor containing all gradients of x w.r.t l > 3) >>> from singa import tensor > >>> from singa import metric > >>> > >>> x = tensor.Tensor((3, 5)) > >>> x.uniform(0, 1) # randomly genearte the prediction activation > >>> x = tensor.SoftMax(x) # normalize the prediction into probabilities > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > AttributeError: module 'singa.tensor' has no attribute 'SoftMax' > >>> y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int)) # set the truth > Traceback (most recent call last): > File "<stdin>", line 1, in <module> > NameError: name 'np' is not defined > >>> > >>> f = metric.Accuracy() > >>> acc = f.evaluate(x, y) # averaged accuracy over all 3 samples in x -- This message was sent by Atlassian JIRA (v7.6.3#76005)