nudles commented on a change in pull request #468: Distributted module URL: https://github.com/apache/incubator-singa/pull/468#discussion_r300913404
########## File path: examples/autograd/resnet_dist.py ########## @@ -23,229 +23,19 @@ from singa import autograd from singa import tensor from singa import device +from singa import opt from singa import dist_opt import numpy as np from tqdm import trange - -__all__ = [ - "ResNet", - "resnet18", - "resnet34", - "resnet50", - "resnet101", - "resnet152", -] - - -def conv3x3(in_planes, out_planes, stride=1): - """3x3 convolution with padding""" - return autograd.Conv2d( - in_planes, - out_planes, - kernel_size=3, - stride=stride, - padding=1, - bias=False, - ) - - -class BasicBlock(autograd.Layer): - expansion = 1 - - def __init__(self, inplanes, planes, stride=1, downsample=None): - super(BasicBlock, self).__init__() - self.conv1 = conv3x3(inplanes, planes, stride) - self.bn1 = autograd.BatchNorm2d(planes) - self.conv2 = conv3x3(planes, planes) - self.bn2 = autograd.BatchNorm2d(planes) - self.downsample = downsample - self.stride = stride - - def __call__(self, x): - residual = x - - out = self.conv1(x) - out = self.bn1(out) - out = autograd.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - - if self.downsample is not None: - residual = self.downsample(x) - - out = autograd.add(out, residual) - out = autograd.relu(out) - - return out - - -class Bottleneck(autograd.Layer): - expansion = 4 - - def __init__(self, inplanes, planes, stride=1, downsample=None): - super(Bottleneck, self).__init__() - self.conv1 = autograd.Conv2d( - inplanes, planes, kernel_size=1, bias=False - ) - self.bn1 = autograd.BatchNorm2d(planes) - self.conv2 = autograd.Conv2d( - planes, planes, kernel_size=3, stride=stride, padding=1, bias=False - ) - self.bn2 = autograd.BatchNorm2d(planes) - self.conv3 = autograd.Conv2d( - planes, planes * self.expansion, kernel_size=1, bias=False - ) - self.bn3 = autograd.BatchNorm2d(planes * self.expansion) - - self.downsample = downsample - self.stride = stride - - def __call__(self, x): - residual = x - - out = self.conv1(x) - out = self.bn1(out) - out = autograd.relu(out) - - out = self.conv2(out) - out = self.bn2(out) - out = autograd.relu(out) - - out = self.conv3(out) - out = self.bn3(out) - - if self.downsample is not None: - residual = self.downsample(x) - - out = autograd.add(out, residual) - out = autograd.relu(out) - - return out - - -class ResNet(autograd.Layer): - def __init__(self, block, layers, num_classes=1000): - self.inplanes = 64 - super(ResNet, self).__init__() - self.conv1 = autograd.Conv2d( - 3, 64, kernel_size=7, stride=2, padding=3, bias=False - ) - self.bn1 = autograd.BatchNorm2d(64) - self.maxpool = autograd.MaxPool2d(kernel_size=3, stride=2, padding=1) - self.layer1 = self._make_layer(block, 64, layers[0]) - self.layer2 = self._make_layer(block, 128, layers[1], stride=2) - self.layer3 = self._make_layer(block, 256, layers[2], stride=2) - self.layer4 = self._make_layer(block, 512, layers[3], stride=2) - self.avgpool = autograd.AvgPool2d(7, stride=1) - self.fc = autograd.Linear(512 * block.expansion, num_classes) - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - conv = autograd.Conv2d( - self.inplanes, - planes * block.expansion, - kernel_size=1, - stride=stride, - bias=False, - ) - bn = autograd.BatchNorm2d(planes * block.expansion) - - def downsample(x): - return bn(conv(x)) - - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for i in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - def forward(x): - for layer in layers: - x = layer(x) - return x - - return forward - - def __call__(self, x): - x = self.conv1(x) - x = self.bn1(x) - x = autograd.relu(x) - x = self.maxpool(x) - - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - - x = self.avgpool(x) - x = autograd.flatten(x) - x = self.fc(x) - - return x - - -def resnet18(pretrained=False, **kwargs): - """Constructs a ResNet-18 model. - - Args: - pretrained (bool): If True, returns a model pre-trained on ImageNet - """ - model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) - - return model - - -def resnet34(pretrained=False, **kwargs): - """Constructs a ResNet-34 model. - - Args: - pretrained (bool): If True, returns a model pre-trained on ImageNet - """ - model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) - - return model - - -def resnet50(pretrained=False, **kwargs): - """Constructs a ResNet-50 model. - - Args: - pretrained (bool): If True, returns a model pre-trained on ImageNet - """ - model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) - - return model - - -def resnet101(pretrained=False, **kwargs): - """Constructs a ResNet-101 model. - - Args: - pretrained (bool): If True, returns a model pre-trained on ImageNet - """ - model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) - - return model - - -def resnet152(pretrained=False, **kwargs): - """Constructs a ResNet-152 model. - - Args: - pretrained (bool): If True, returns a model pre-trained on ImageNet - """ - model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) - - return model - - if __name__ == "__main__": - sgd = dist_opt.Dist_SGD(lr=0.1) + sgd = opt.SGD(lr=0.1, momentum=0.9, weight_decay=1e-5) + sgd = dist_opt.DistOpt(sgd) Review comment: merge dist_opt code into opt? then you can call `sgd = opt.DistOpt(sgd)` ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org With regards, Apache Git Services