After commit 8856c3d8 switched from gzip to snappy as default parquet
compression codec, I'm seeing the following when trying to read parquet
files saved using the new default (same schema and roughly same size as
files that were previously working):
java.lang.OutOfMemoryError: Direct buffer memory
java.nio.Bits.reserveMemory(Bits.java:658)
java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123)
java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:306)
parquet.hadoop.codec.SnappyDecompressor.setInput(SnappyDecompressor.java:99)
parquet.hadoop.codec.NonBlockedDecompressorStream.read(NonBlockedDecompressorStream.java:43)
java.io.DataInputStream.readFully(DataInputStream.java:195)
java.io.DataInputStream.readFully(DataInputStream.java:169)
parquet.bytes.BytesInput$StreamBytesInput.toByteArray(BytesInput.java:201)
parquet.column.impl.ColumnReaderImpl.readPage(ColumnReaderImpl.java:521)
parquet.column.impl.ColumnReaderImpl.checkRead(ColumnReaderImpl.java:493)
parquet.column.impl.ColumnReaderImpl.consume(ColumnReaderImpl.java:546)
parquet.column.impl.ColumnReaderImpl.<init>(ColumnReaderImpl.java:339)
parquet.column.impl.ColumnReadStoreImpl.newMemColumnReader(ColumnReadStoreImpl.java:63)
parquet.column.impl.ColumnReadStoreImpl.getColumnReader(ColumnReadStoreImpl.java:58)
parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:265)
parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:60)
parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:74)
parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:110)
parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:172)
parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:130)
org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:139)
org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388)
scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
scala.collection.Iterator$class.isEmpty(Iterator.scala:256)
scala.collection.AbstractIterator.isEmpty(Iterator.scala:1157)
org.apache.spark.sql.execution.ExistingRdd$$anonfun$productToRowRdd$1.apply(basicOperators.scala:220)
org.apache.spark.sql.execution.ExistingRdd$$anonfun$productToRowRdd$1.apply(basicOperators.scala:219)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
org.apache.spark.scheduler.Task.run(Task.scala:54)
org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:181)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
java.lang.Thread.run(Thread.java:722)