Dear Spark developers,
I am trying to perform BlockMatrix multiplication in Spark. My test is as
follows: 1)create a matrix of N blocks, so that each row of block matrix
contains only 1 block and each block resides in separate partition on separate
node, 2)transpose the block matrix and 3)multiply the transposed matrix by the
original non-transposed one. This should preserve the data locality, so there
should be no need for shuffle. However, I observe huge shuffle with the block
matrix size of 50000x10000 and one block 10000x10000, 5 blocks per matrix.
Could you suggest what is wrong?
My setup is Spark 1.4, one master and 5 worker nodes, each is Xeon 2.2 16 GB
RAM.
Below is the test code:
import org.apache.spark.mllib.linalg.Matrices
import org.apache.spark.mllib.linalg.distributed.BlockMatrix
val parallelism = 5
val blockSize = 10000
val rows = parallelism * blockSize
val columns = blockSize
val size = rows * columns
assert(rows % blockSize == 0)
assert(columns % blockSize == 0)
val rowBlocks = rows / blockSize
val columnBlocks = columns / blockSize
val rdd = sc.parallelize( {
for(i <- 0 until rowBlocks; j <- 0 until columnBlocks) yield
(i, j)
}, parallelism).map( coord => (coord, Matrices.rand(blockSize,
blockSize, util.Random.self)))
val bm = new BlockMatrix(rdd, blockSize, blockSize).cache()
bm.validate()
val mb = bm.transpose.cache()
mb.validate()
val t = System.nanoTime()
val ata = mb.multiply(bm)
ata.validate()
println(rows + "x" + columns + ", block:" + blockSize + "\t" +
(System.nanoTime() - t) / 1e9)
Best regards, Alexander