Given the line numbers from the stacktrace, it seems that you use a
rather old version of SystemML. Hence, I would recommend to upgrade to
SystemML 1.0 or at least 0.15 first.
If the error persists or you're not able to upgrade, please try to call
dataFrameToBinaryBlock with provided matrix characteristics of
dimensions and blocksizes. The issue you've shown usually originates
from incorrect meta data (e.g., negative number of columns or block
sizes), which prevents the sparse rows from growing to the necessary sizes.
Regards,
Matthias
On 12/22/2017 10:42 PM, Anthony Thomas wrote:
Hi Matthias,
Thanks for the help! In response to your questions:
1. Sorry - this was a typo: the correct schema is: [y: int, features:
vector] - the column "features" was created using Spark's VectorAssembler
and the underlying type is an org.apache.spark.ml.linalg.SparseVector.
Calling x.schema results in: org.apache.spark.sql.types.StructType =
StructType(StructField(features,org.apache.spark.ml.
linalg.VectorUDT@3bfc3ba7,true)
2. "y" converts fine - it appears the only issue is with X. The script
still crashes when running "print(sum(X))". The full stack trace is
attached at the end of the message.
3. Unfortunately, the error persists when calling
RDDConverterUtils.dataFrameToBinaryBlock directly.
4. Also just in case this matters: I'm packaging the script into a jar
using SBT assembly and submitting via spark-submit.
Here's an updated script:
val input_df = spark.read.parquet(inputPath)
val x = input_df.select(featureNames)
val y = input_df.select("y")
val meta_x = new MatrixMetadata(DF_VECTOR)
val meta_y = new MatrixMetadata(DF_DOUBLES)
val script_x = dml("print(sum(X))").in("X", x, meta_x)
println("Reading X")
val res_x = ml.execute(script_x)
Here is the output of the runtime plan generated by SystemML:
# EXPLAIN (RUNTIME):
# Memory Budget local/remote = 76459MB/?MB/?MB/?MB
# Degree of Parallelism (vcores) local/remote = 24/?
PROGRAM ( size CP/SP = 3/0 )
--MAIN PROGRAM
----GENERIC (lines 1-2) [recompile=false]
------CP uak+ X.MATRIX.DOUBLE _Var0.SCALAR.STRING 24
------CP print _Var0.SCALAR.STRING.false _Var1.SCALAR.STRING
------CP rmvar _Var0 _Var1
And the resulting stack trace:
7/12/22 21:27:20 WARN TaskSetManager: Lost task 3.0 in stage 7.0 (TID 205,
10.11.10.12, executor 3): java.lang.ArrayIndexOutOfBoundsException: 0
at org.apache.sysml.runtime.matrix.data.SparseRow.append(
SparseRow.java:215)
at org.apache.sysml.runtime.matrix.data.SparseBlockMCSR.
append(SparseBlockMCSR.java:253)
at org.apache.sysml.runtime.matrix.data.MatrixBlock.
appendValue(MatrixBlock.java:663)
at org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtils$
DataFrameToBinaryBlockFunction.call(RDDConverterUtils.java:1076)
at org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtils$
DataFrameToBinaryBlockFunction.call(RDDConverterUtils.java:1008)
at org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.
apply(JavaRDDLike.scala:186)
at org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.
apply(JavaRDDLike.scala:186)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$
anonfun$apply$23.apply(RDD.scala:797)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$
anonfun$apply$23.apply(RDD.scala:797)
at org.apache.spark.rdd.MapPartitionsRDD.compute(
MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(
ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(
ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(
ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(
ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
17/12/22 21:27:21 ERROR TaskSetManager: Task 19 in stage 7.0 failed 4
times; aborting job
Exception in thread "main" org.apache.sysml.api.mlcontext.MLContextException:
Exception when executing script
at org.apache.sysml.api.mlcontext.MLContext.execute(MLContext.java:311)
at org.apache.sysml.api.mlcontext.MLContext.execute(MLContext.java:280)
at SystemMLMLAlgorithms$$anonfun$main$1.apply$mcVI$sp(systemml_
ml_algorithms.scala:63)
at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:160)
at SystemMLMLAlgorithms$.main(systemml_ml_algorithms.scala:60)
at SystemMLMLAlgorithms.main(systemml_ml_algorithms.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(
NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(
DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$
deploy$SparkSubmit$$runMain(SparkSubmit.scala:755)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(
SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: org.apache.sysml.api.mlcontext.MLContextException: Exception
occurred while executing runtime program
at org.apache.sysml.api.mlcontext.ScriptExecutor.executeRuntimeProgram(
ScriptExecutor.java:390)
at org.apache.sysml.api.mlcontext.ScriptExecutor.
execute(ScriptExecutor.java:298)
at org.apache.sysml.api.mlcontext.MLContext.execute(MLContext.java:303)
... 14 more
Caused by: org.apache.sysml.runtime.DMLRuntimeException:
org.apache.sysml.runtime.DMLRuntimeException: ERROR: Runtime error in
program block generated from statement block between lines 1 and 2 -- Error
evaluating instruction: CP°uak+°X·MATRIX·DOUBLE°_Var0·SCALAR·STRING°24
at org.apache.sysml.runtime.controlprogram.Program.
execute(Program.java:130)
at org.apache.sysml.api.mlcontext.ScriptExecutor.executeRuntimeProgram(
ScriptExecutor.java:388)
... 16 more
...
On Fri, Dec 22, 2017 at 5:48 AM, Matthias Boehm <mboe...@gmail.com> wrote:
well, let's do the following to figure this out:
1) If the schema is indeed [label: Integer, features: SparseVector],
please change the third line to val y = input_data.select("label").
2) For debugging, I would recommend to use a simple script like
"print(sum(X));" and try converting X and y separately to isolate the
problem.
3) If it's still failing, it would be helpful to known (a) if it's an
issue of converting X, y, or both, as well as (b) the full stacktrace.
4) As a workaround you might also call our internal converter directly via:
RDDConverterUtils.dataFrameToBinaryBlock(jsc, df, mc, containsID,
isVector),
where jsc is the java spark context, df is the dataset, mc are matrix
characteristics (if unknown, simply use new MatrixCharacteristics()),
containsID indicates if the dataset contains a column "__INDEX" with the
row indexes, and isVector indicates if the passed datasets contains vectors
or basic types such as double.
Regards,
Matthias
On 12/22/2017 12:00 AM, Anthony Thomas wrote:
Hi SystemML folks,
I'm trying to pass some data from Spark to a DML script via the MLContext
API. The data is derived from a parquet file containing a dataframe with
the schema: [label: Integer, features: SparseVector]. I am doing the
following:
val input_data = spark.read.parquet(inputPath)
val x = input_data.select("features")
val y = input_data.select("y")
val x_meta = new MatrixMetadata(DF_VECTOR)
val y_meta = new MatrixMetadata(DF_DOUBLES)
val script = dmlFromFile(s"${script_path}/script.dml").
in("X", x, x_meta).
in("Y", y, y_meta)
...
However, this results in an error from SystemML:
java.lang.ArrayIndexOutOfBoundsException: 0
I'm guessing this has something to do with SparkML being zero indexed and
SystemML being 1 indexed. Is there something I should be doing differently
here? Note that I also tried converting the dataframe to a
CoordinateMatrix
and then creating an RDD[String] in IJV format. That too resulted in
"ArrayIndexOutOfBoundsExceptions." I'm guessing there's something simple
I'm doing wrong here, but I haven't been able to figure out exactly what.
Please let me know if you need more information (I can send along the full
error stacktrace if that would be helpful)!
Thanks,
Anthony