t201 opened a new pull request #961: URL: https://github.com/apache/systemml/pull/961
This Documentation is for Multinomial Logistic Regression using Trust Region method. # Introduction The DML (Declarative Machine Learning) language has built-in functions which enable access to both low- and high-level function ## `Multinomial Logistic Regression` -Function The Multinomial Logistic Regression Model is is used to link and provide an estimate of category label probabilities ( y, having multiple rows single column ) which are a response to the numerical vector of explanatory (feature) variables (x, having multiple rows and multiple columns) . The number of links can be 3 or greater unlike binomial regression. ### Usage ``` mulLogisticRegression = function( Matrix X, Matrix Y, intercept_scaling , max_iter , tolerance , max1 , maxi2 , verbose ) return(Matrix A) ### Arguments | Name | Type | Default | Description | | :---- | :------------- | -------- | :------------------------------- | | X | Matrix[Double] | -- | Matrix of numerical vector of explanatory variables| | Y | Matrix[Double] | -- | Matrix of a categorical response variable| | intercept_scaling| Int | 0 | intercept for shifting and rescaling X columns| | reg_para | Double | 0 | regularization parameter| | tolerance | Double | 0.00001 | tolerance ("epsilon")| | max1 | Int | 100 | max. no. of outer newton interations| | max2 | Int | 0 | max. no. of inner (conjugate gradient) iterations| ### Returns | Type | Description | | :------------- | :---------- | | Matrix[Double] | probability regression as output | ### Example ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org