t201 opened a new pull request #961:
URL: https://github.com/apache/systemml/pull/961


   This Documentation is for Multinomial Logistic Regression using Trust Region 
method.
   #  Introduction
   The DML (Declarative Machine Learning) language has built-in functions which 
enable access to both low- and high-level function
   
   
   
   ## `Multinomial Logistic Regression` -Function
   The Multinomial Logistic Regression Model is is used to link and provide an 
estimate of category label probabilities ( y, having multiple rows single 
column ) which are a response to the numerical vector of explanatory (feature) 
variables (x, having multiple rows and multiple columns) . The number of links 
can be 3 or greater unlike binomial regression.
   
   ### Usage
   ```
   mulLogisticRegression = function( Matrix X, Matrix Y,  intercept_scaling ,  
max_iter , tolerance ,
      max1 ,  maxi2 ,  verbose )
     return(Matrix A)
   
   ### Arguments
   
   | Name             | Type            | Default  | Description |
   | :----            | :-------------  | -------- | 
:------------------------------- |
   | X                | Matrix[Double]  | --       | Matrix of numerical vector 
of explanatory  variables|
   | Y                | Matrix[Double]  | --       | Matrix of  a categorical 
response variable|
   | intercept_scaling| Int             | 0        | intercept for shifting and 
rescaling X columns|
   | reg_para         | Double          | 0        | regularization parameter|
   | tolerance        | Double          | 0.00001  | tolerance ("epsilon")|
   | max1             | Int             | 100      | max. no. of outer newton 
interations|
   | max2             | Int             | 0        | max. no. of inner 
(conjugate gradient) iterations|
   
   ### Returns
   | Type                   | Description |
   | :-------------         | :---------- |
   | Matrix[Double]         | probability regression as output |
   ### Example
   
   
   
   
   
   
   
   
   
   
   
   


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to