Semet created ZEPPELIN-1419:
-------------------------------
Summary: PySpark dependencies support
Key: ZEPPELIN-1419
URL: https://issues.apache.org/jira/browse/ZEPPELIN-1419
Project: Zeppelin
Issue Type: Improvement
Components: python-interpreter
Reporter: Semet
Is it possible to add support for dependencies description on a notebook?
Ideally, one would describes its dependencies on top of the notebook, ie, when
python developers write in requirements.txt).
PySpark would automatically handle the installation and deployment of it,
inside a virtualenv or a conda.
This would allow PySpark jobs to be completely independent from each other. If
one notebook needs a Python library that does not exist on the cluster the
installation will be done automatically, and with all the transitive
dependencies automatically downloaded as well from pypi.python.org.
Also, two different jobs might use the same library but in two different
versions.
I am working on this support for PySpark, with the ticket SPARK-16367 and in
Toree for Jupyter, with TOREE-337. Let me know what you think.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)