This patch adds support for the SLC NAND controller inside the LPC32xx SoC.

Signed-off-by: Roland Stigge <sti...@antcom.de>

---
Applies to 3.4-rc6

This driver is ported from git.lpclinux.com 2.6.39.2-lpc, including DT and
dmaengine/pl080 support.

 Documentation/devicetree/bindings/mtd/lpc32xx-slc.txt |   52 
 drivers/mtd/nand/Kconfig                              |   11 
 drivers/mtd/nand/Makefile                             |    1 
 drivers/mtd/nand/lpc32xx_nand_slc.c                   | 1067 ++++++++++++++++++
 4 files changed, 1131 insertions(+)

--- /dev/null
+++ linux-2.6/Documentation/devicetree/bindings/mtd/lpc32xx-slc.txt
@@ -0,0 +1,52 @@
+NXP LPC32xx SoC NAND SLC controller
+
+Required properties:
+- compatible: "nxp,lpc3220-slc"
+- reg: Address and size of the controller
+- nand-on-flash-bbt: Use bad block table on flash
+- gpios: GPIO specification for NAND write protect
+
+The following required properties are very controller specific. See the LPC32xx
+User Manual:
+- nxp,wdr-clks: Delay before Ready signal is tested on write (W_RDY)
+- nxp,rdr-clks: Delay before Ready signal is tested on read (R_RDY)
+(The following values are specified in Hz, to make them independent of actual
+clock speed:)
+- nxp,wwidth: Write pulse width (W_WIDTH)
+- nxp,whold: Write hold time (W_HOLD)
+- nxp,wsetup: Write setup time (W_SETUP)
+- nxp,rwidth: Read pulse width (R_WIDTH)
+- nxp,rhold: Read hold time (R_HOLD)
+- nxp,rsetup: Read setup time (R_SETUP)
+
+Optional subnodes:
+- Partitions, see Documentation/devicetree/bindings/mtd/partition.txt
+
+Example:
+
+       slc: flash@20020000 {
+               compatible = "nxp,lpc3220-slc";
+               reg = <0x20020000 0x1000>;
+               #address-cells = <1>;
+               #size-cells = <1>;
+
+               nxp,wdr-clks = <14>;
+               nxp,wwidth = <40000000>;
+               nxp,whold = <100000000>;
+               nxp,wsetup = <100000000>;
+               nxp,rdr-clks = <14>;
+               nxp,rwidth = <40000000>;
+               nxp,rhold = <66666666>;
+               nxp,rsetup = <100000000>;
+               nand-on-flash-bbt;
+               gpios = <&gpio 5 19 1>; /* GPO_P3 19, active low */
+
+               mtd0@00000000 {
+                       label = "phy3250-boot";
+                       reg = <0x00000000 0x00064000>;
+                       read-only;
+               };
+
+               ...
+
+       };
--- linux-2.6.orig/drivers/mtd/nand/Kconfig
+++ linux-2.6/drivers/mtd/nand/Kconfig
@@ -414,6 +414,17 @@ config MTD_NAND_PXA3xx
          This enables the driver for the NAND flash device found on
          PXA3xx processors
 
+config MTD_NAND_SLC_LPC32XX
+       bool "NXP LPC32xx SLC Controller"
+       depends on ARCH_LPC32XX
+       help
+         Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell
+         chips) NAND controller. This is the default for the PHYTEC 3250
+         reference board which contains a NAND256R3A2CZA6 chip.
+
+         Please check the actual NAND chip connected and its support
+         by the SLC NAND controller.
+
 config MTD_NAND_CM_X270
        tristate "Support for NAND Flash on CM-X270 modules"
        depends on MACH_ARMCORE
--- linux-2.6.orig/drivers/mtd/nand/Makefile
+++ linux-2.6/drivers/mtd/nand/Makefile
@@ -40,6 +40,7 @@ obj-$(CONFIG_MTD_NAND_ORION)          += orion_n
 obj-$(CONFIG_MTD_NAND_FSL_ELBC)                += fsl_elbc_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_IFC)         += fsl_ifc_nand.o
 obj-$(CONFIG_MTD_NAND_FSL_UPM)         += fsl_upm.o
+obj-$(CONFIG_MTD_NAND_SLC_LPC32XX)      += lpc32xx_nand_slc.o
 obj-$(CONFIG_MTD_NAND_SH_FLCTL)                += sh_flctl.o
 obj-$(CONFIG_MTD_NAND_MXC)             += mxc_nand.o
 obj-$(CONFIG_MTD_NAND_SOCRATES)                += socrates_nand.o
--- /dev/null
+++ linux-2.6/drivers/mtd/nand/lpc32xx_nand_slc.c
@@ -0,0 +1,1067 @@
+/*
+ * NXP LPC32XX NAND SLC driver
+ *
+ * Authors:
+ *    Kevin Wells <kevin.we...@nxp.com>
+ *    Roland Stigge <sti...@antcom.de>
+ *
+ * Copyright (C) 2011 NXP Semiconductors
+ * Copyright (C) 2012 Roland Stigge
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/io.h>
+#include <linux/mm.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/gpio.h>
+#include <linux/of.h>
+#include <linux/of_mtd.h>
+#include <linux/of_gpio.h>
+#include <linux/amba/pl08x.h>
+
+#define LPC32XX_MODNAME                "lpc32xx-nand"
+
+/**********************************************************************
+* SLC NAND controller register offsets
+**********************************************************************/
+
+#define SLC_DATA(x)            (x + 0x000)
+#define SLC_ADDR(x)            (x + 0x004)
+#define SLC_CMD(x)             (x + 0x008)
+#define SLC_STOP(x)            (x + 0x00C)
+#define SLC_CTRL(x)            (x + 0x010)
+#define SLC_CFG(x)             (x + 0x014)
+#define SLC_STAT(x)            (x + 0x018)
+#define SLC_INT_STAT(x)                (x + 0x01C)
+#define SLC_IEN(x)             (x + 0x020)
+#define SLC_ISR(x)             (x + 0x024)
+#define SLC_ICR(x)             (x + 0x028)
+#define SLC_TAC(x)             (x + 0x02C)
+#define SLC_TC(x)              (x + 0x030)
+#define SLC_ECC(x)             (x + 0x034)
+#define SLC_DMA_DATA(x)                (x + 0x038)
+
+/**********************************************************************
+* slc_ctrl register definitions
+**********************************************************************/
+#define SLCCTRL_SW_RESET       (1 << 2) /* Reset the NAND controller bit */
+#define SLCCTRL_ECC_CLEAR      (1 << 1) /* Reset ECC bit */
+#define SLCCTRL_DMA_START      (1 << 0) /* Start DMA channel bit */
+
+/**********************************************************************
+* slc_cfg register definitions
+**********************************************************************/
+#define SLCCFG_CE_LOW          (1 << 5) /* Force CE low bit */
+#define SLCCFG_DMA_ECC         (1 << 4) /* Enable DMA ECC bit */
+#define SLCCFG_ECC_EN          (1 << 3) /* ECC enable bit */
+#define SLCCFG_DMA_BURST       (1 << 2) /* DMA burst bit */
+#define SLCCFG_DMA_DIR         (1 << 1) /* DMA write(0)/read(1) bit */
+#define SLCCFG_WIDTH           (1 << 0) /* External device width, 0=8bit */
+
+/**********************************************************************
+* slc_stat register definitions
+**********************************************************************/
+#define SLCSTAT_DMA_FIFO       (1 << 2) /* DMA FIFO has data bit */
+#define SLCSTAT_SLC_FIFO       (1 << 1) /* SLC FIFO has data bit */
+#define SLCSTAT_NAND_READY     (1 << 0) /* NAND device is ready bit */
+
+/**********************************************************************
+* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
+**********************************************************************/
+#define SLCSTAT_INT_TC         (1 << 1) /* Transfer count bit */
+#define SLCSTAT_INT_RDY_EN     (1 << 0) /* Ready interrupt bit */
+
+/**********************************************************************
+* slc_tac register definitions
+**********************************************************************/
+/* Clock setting for RDY write sample wait time in 2*n clocks */
+#define SLCTAC_WDR(n)          (((n) & 0xF) << 28)
+/* Write pulse width in clock cycles, 1 to 16 clocks */
+#define SLCTAC_WWIDTH(n)       (((n) & 0xF) << 24)
+/* Write hold time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_WHOLD(n)                (((n) & 0xF) << 20)
+/* Write setup time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_WSETUP(n)       (((n) & 0xF) << 16)
+/* Clock setting for RDY read sample wait time in 2*n clocks */
+#define SLCTAC_RDR(n)          (((n) & 0xF) << 12)
+/* Read pulse width in clock cycles, 1 to 16 clocks */
+#define SLCTAC_RWIDTH(n)       (((n) & 0xF) << 8)
+/* Read hold time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_RHOLD(n)                (((n) & 0xF) << 4)
+/* Read setup time of control and data signals, 1 to 16 clocks */
+#define SLCTAC_RSETUP(n)       (((n) & 0xF) << 0)
+
+/**********************************************************************
+* slc_ecc register definitions
+**********************************************************************/
+/* ECC line party fetch macro */
+#define SLCECC_TO_LINEPAR(n)   (((n) >> 6) & 0x7FFF)
+#define SLCECC_TO_COLPAR(n)    ((n) & 0x3F)
+
+/*
+ * DMA requires storage space for the DMA local buffer and the hardware ECC
+ * storage area. The DMA local buffer is only used if DMA mapping fails
+ * during runtime.
+ */
+#define LPC32XX_DMA_DATA_SIZE          4096
+#define LPC32XX_ECC_SAVE_SIZE          ((4096 / 256) * 4)
+
+/* Number of bytes used for ECC stored in NAND per 256 bytes */
+#define LPC32XX_SLC_DEV_ECC_BYTES      3
+
+/*
+ * If the NAND base clock frequency can't be fetched, this frequency will be
+ * used instead as the base. This rate is used to setup the timing registers
+ * used for NAND accesses.
+ */
+#define LPC32XX_DEF_BUS_RATE           133250000
+
+/*
+ * This timeout is used for verifying the NAND buffer has commited its
+ * FIFO to memory or FLASH, or verifying the DMA transfer has completed.
+ * The timeout is used as a count for simple polled checks of the hardware.
+ * For most hardware, the actual timeouts are much lower than this, but
+ * very slow hardware may use most of this time.
+ */
+#define LPC32XX_DMA_SIMPLE_TIMEOUT     10000
+
+/*
+ * NAND ECC Layout for small page NAND devices
+ * Note: For large and huge page devices, the default layouts are used
+ */
+static struct nand_ecclayout lpc32xx_nand_oob_16 = {
+       .eccbytes = 6,
+       .eccpos = {10, 11, 12, 13, 14, 15},
+       .oobfree = {
+               { .offset = 0, .length = 4 },
+               { .offset = 6, .length = 4 },
+       },
+};
+
+static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+/*
+ * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
+ * Note: Large page devices used the default layout
+ */
+static struct nand_bbt_descr bbt_smallpage_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 0,
+       .len = 4,
+       .veroffs = 6,
+       .maxblocks = 4,
+       .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_smallpage_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 0,
+       .len = 4,
+       .veroffs = 6,
+       .maxblocks = 4,
+       .pattern = mirror_pattern
+};
+
+/*
+ * NAND platform configuration structure
+ */
+struct lpc32xx_nand_cfg_slc {
+       u32     wdr_clks;
+       u32     wwidth;
+       u32     whold;
+       u32     wsetup;
+       u32     rdr_clks;
+       u32     rwidth;
+       u32     rhold;
+       u32     rsetup;
+       bool    use_bbt;
+       unsigned wp_gpio;
+       struct mtd_partition *parts;
+       unsigned num_parts;
+};
+
+struct lpc32xx_nand_host {
+       struct nand_chip        nand_chip;
+       struct clk              *clk;
+       struct mtd_info         mtd;
+       void __iomem            *io_base;
+       struct lpc32xx_nand_cfg_slc *ncfg;
+
+       struct completion       comp;
+       struct dma_chan         *dma_chan;
+       u32                     dma_buf_len;
+       struct dma_slave_config dma_slave_config;
+       struct scatterlist      sgl;
+
+       /*
+        * DMA and CPU addresses of ECC work area and data buffer
+        */
+       u32                     *ecc_buf;
+       u8                      *data_buf;
+       dma_addr_t              io_base_dma;
+};
+
+static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
+{
+       u32 clkrate, tmp;
+
+       /* Reset SLC controller */
+       writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base));
+       udelay(1000);
+
+       /* Basic setup */
+       writel(0, SLC_CFG(host->io_base));
+       writel(0, SLC_IEN(host->io_base));
+       writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN),
+               SLC_ICR(host->io_base));
+
+       /* Get base clock for SLC block */
+       clkrate = clk_get_rate(host->clk);
+       if (clkrate == 0)
+               clkrate = LPC32XX_DEF_BUS_RATE;
+
+       /* Compute clock setup values */
+       tmp = SLCTAC_WDR(host->ncfg->wdr_clks) |
+               SLCTAC_WWIDTH(1 + (clkrate / host->ncfg->wwidth)) |
+               SLCTAC_WHOLD(1 + (clkrate / host->ncfg->whold)) |
+               SLCTAC_WSETUP(1 + (clkrate / host->ncfg->wsetup)) |
+               SLCTAC_RDR(host->ncfg->rdr_clks) |
+               SLCTAC_RWIDTH(1 + (clkrate / host->ncfg->rwidth)) |
+               SLCTAC_RHOLD(1 + (clkrate / host->ncfg->rhold)) |
+               SLCTAC_RSETUP(1 + (clkrate / host->ncfg->rsetup));
+       writel(tmp, SLC_TAC(host->io_base));
+}
+
+/*
+ * Hardware specific access to control lines
+ */
+static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
+       unsigned int ctrl)
+{
+       u32 tmp;
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+
+       /* Does CE state need to be changed? */
+       tmp = readl(SLC_CFG(host->io_base));
+       if (ctrl & NAND_NCE)
+               tmp |= SLCCFG_CE_LOW;
+       else
+               tmp &= ~SLCCFG_CE_LOW;
+       writel(tmp, SLC_CFG(host->io_base));
+
+       if (cmd != NAND_CMD_NONE) {
+               if (ctrl & NAND_CLE)
+                       writel(cmd, SLC_CMD(host->io_base));
+               else
+                       writel(cmd, SLC_ADDR(host->io_base));
+       }
+}
+
+/*
+ * Read the Device Ready pin
+ */
+static int lpc32xx_nand_device_ready(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+       int rdy = 0;
+
+       if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0)
+               rdy = 1;
+
+       return rdy;
+}
+
+/*
+ * Enable NAND write protect
+ */
+static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
+{
+       gpio_set_value(host->ncfg->wp_gpio, 0);
+}
+
+/*
+ * Disable NAND write protect
+ */
+static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
+{
+       gpio_set_value(host->ncfg->wp_gpio, 1);
+}
+
+/*
+ * Prepares SLC for transfers with H/W ECC enabled
+ */
+static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode)
+{
+       /* Hardware ECC is enabled automatically in hardware as needed */
+}
+
+/*
+ * Calculates the ECC for the data
+ */
+static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd,
+                                     const unsigned char *buf,
+                                     unsigned char *code)
+{
+       /*
+        * ECC is calculated automatically in hardware during syndrome read
+        * and write operations, so it doesn't need to be calculated here.
+        */
+       return 0;
+}
+
+/*
+ * Read a single byte from NAND device
+ */
+static u8 lpc32xx_nand_read_byte(struct mtd_info *mtd)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+
+       return (u8)readl(SLC_DATA(host->io_base));
+}
+
+/*
+ * Simple device read without ECC
+ */
+static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+
+       /* Direct device read with no ECC */
+       while (len-- > 0)
+               *buf++ = (u8)readl(SLC_DATA(host->io_base));
+}
+
+/*
+ * Simple device write without ECC
+ */
+static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int 
len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+
+       /* Direct device write with no ECC */
+       while (len-- > 0)
+               writel((u32)*buf++, SLC_DATA(host->io_base));
+}
+
+/*
+ * Verify data in buffer to data on device
+ */
+static int lpc32xx_verify_buf(struct mtd_info *mtd, const u8 *buf, int len)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+       int i;
+
+       /* DATA register must be read as 32 bits or it will fail */
+       for (i = 0; i < len; i++) {
+               if (buf[i] != (u8)readl(SLC_DATA(host->io_base)))
+                       return -EFAULT;
+       }
+
+       return 0;
+}
+
+/*
+ * Read the OOB data from the device without ECC using FIFO method
+ */
+static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd,
+                                         struct nand_chip *chip, int page,
+                                         int sndcmd)
+{
+       if (sndcmd) {
+               chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+               sndcmd = 0;
+       }
+       chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       return sndcmd;
+}
+
+/*
+ * Write the OOB data to the device without ECC using FIFO method
+ */
+static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd,
+       struct nand_chip *chip, int page)
+{
+       int status;
+
+       chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+       chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       /* Send command to program the OOB data */
+       chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+       status = chip->waitfunc(mtd, chip);
+
+       return status & NAND_STATUS_FAIL ? -EIO : 0;
+}
+
+/*
+ * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
+ */
+static void lpc32xx_slc_ecc_copy(u8 *spare, const u32 *ecc, int count)
+{
+       int i;
+
+       for (i = 0; i < (count * 3); i += 3) {
+               u32 ce = ecc[i / 3];
+               ce = ~(ce << 2) & 0xFFFFFF;
+               spare[i + 2] = (u8)(ce & 0xFF);
+               ce >>= 8;
+               spare[i + 1] = (u8)(ce & 0xFF);
+               ce >>= 8;
+               spare[i] = (u8)(ce & 0xFF);
+       }
+}
+
+static void lpc32xx_dma_complete_func(void *completion)
+{
+       complete(completion);
+}
+
+static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma,
+                           void *mem, int len, enum dma_transfer_direction dir)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+       struct dma_async_tx_descriptor *desc;
+       int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
+       int res;
+       dma_cookie_t cookie;
+
+       host->dma_slave_config.direction = dir;
+       host->dma_slave_config.src_addr = dma;
+       host->dma_slave_config.dst_addr = dma;
+       host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+       host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+       host->dma_slave_config.src_maxburst = 4;
+       host->dma_slave_config.dst_maxburst = 4;
+       /* DMA controller does flow control: */
+       host->dma_slave_config.device_fc = false;
+       if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
+               dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
+               return -ENXIO;
+       }
+
+       sg_init_one(&host->sgl, mem, len);
+
+       res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, dir);
+       if (res != 1) {
+               dev_err(mtd->dev.parent, "Failed to map sg list\n");
+               return -ENXIO;
+       }
+       desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
+                                      flags);
+       if (!desc) {
+               dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
+               goto out1;
+       }
+
+       init_completion(&host->comp);
+       desc->callback = lpc32xx_dma_complete_func;
+       desc->callback_param = &host->comp;
+
+       cookie = dmaengine_submit(desc);
+       if (dma_submit_error(cookie)) {
+               dev_err(mtd->dev.parent, "Failed to dmaengine_submit()\n");
+               goto out1;
+       }
+       dma_async_issue_pending(host->dma_chan);
+
+       wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000));
+
+       dma_sync_sg_for_cpu(host->dma_chan->device->dev, &host->sgl, 1, dir);
+
+       return 0;
+out1:
+       dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, dir);
+       return -ENXIO;
+}
+
+/*
+ * DMA read/write transfers with ECC support
+ */
+static int lpc32xx_xfer(struct mtd_info *mtd, u8 *buf, int eccsubpages,
+                       int read)
+{
+       struct nand_chip *chip = mtd->priv;
+       struct lpc32xx_nand_host *host = chip->priv;
+       int i, timeout, status = 0;
+       int res;
+       enum dma_transfer_direction dir =
+               read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
+       u8 *dma_buf;
+       bool dma_mapped;
+
+       if ((void *)buf <= high_memory) {
+               dma_buf = buf;
+               dma_mapped = true;
+       } else {
+               dma_buf = host->data_buf;
+               dma_mapped = false;
+               if (!read)
+                       memcpy(host->data_buf, buf, mtd->writesize);
+       }
+
+       if (read) {
+               writel(readl(SLC_CFG(host->io_base)) |
+                      SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
+                      SLCCFG_DMA_BURST, SLC_CFG(host->io_base));
+       } else {
+               writel((readl(SLC_CFG(host->io_base)) |
+                       SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) &
+                      ~SLCCFG_DMA_DIR,
+                       SLC_CFG(host->io_base));
+       }
+
+       /* Clear initial ECC */
+       writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base));
+
+       /* Transfer size is data area only */
+       writel(mtd->writesize, SLC_TC(host->io_base));
+
+       /* Start transfer in the NAND controller */
+       writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START,
+              SLC_CTRL(host->io_base));
+
+       for (i = 0; i < chip->ecc.steps; i++) {
+               /* Data */
+               res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma),
+                                      dma_buf + i * chip->ecc.size,
+                                      mtd->writesize / chip->ecc.steps, dir);
+               if (res)
+                       return res;
+
+               /* Always _read_ ECC */
+               if (i == chip->ecc.steps - 1)
+                       break;
+               if (!read) /* ECC availability delayed on write */
+                       udelay(10);
+               res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma),
+                                      &host->ecc_buf[i], 4, DMA_DEV_TO_MEM);
+               if (res)
+                       return res;
+       }
+
+       /*
+        * The DMA is finished, but the NAND controller may still have
+        * buffered data. Wait until all the data is sent.
+        */
+       timeout = LPC32XX_DMA_SIMPLE_TIMEOUT;
+       while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO)
+              && (timeout > 0))
+               timeout--;
+       if (!timeout) {
+               dev_err(mtd->dev.parent, "FIFO held data too long\n");
+               status = -EIO;
+       }
+
+       /* Read last calculated ECC value */
+       if (!read)
+               udelay(10);
+       host->ecc_buf[chip->ecc.steps - 1] =
+               readl(SLC_ECC(host->io_base));
+
+       /* Flush DMA */
+       dmaengine_terminate_all(host->dma_chan);
+
+       if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO ||
+           readl(SLC_TC(host->io_base))) {
+               /* Something is left in the FIFO, something is wrong */
+               dev_err(mtd->dev.parent, "DMA FIFO failure\n");
+               status = -EIO;
+       }
+
+       /* Stop DMA & HW ECC */
+       writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START,
+              SLC_CTRL(host->io_base));
+       writel(readl(SLC_CFG(host->io_base)) &
+              ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC |
+                SLCCFG_DMA_BURST), SLC_CFG(host->io_base));
+
+       if (!dma_mapped && read)
+               memcpy(buf, host->data_buf, mtd->writesize);
+
+       return status;
+}
+
+/*
+ * Read the data and OOB data from the device, use ECC correction with the
+ * data, disable ECC for the OOB data
+ */
+static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd,
+                                          struct nand_chip *chip, u8 *buf,
+                                          int page)
+{
+       struct lpc32xx_nand_host *host = chip->priv;
+       int stat, i, status;
+       u8 *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE];
+
+       /* Issue read command */
+       chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+       /* Read data and oob, calculate ECC */
+       status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1);
+
+       /* Get OOB data */
+       chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       /* Convert to stored ECC format */
+       lpc32xx_slc_ecc_copy(tmpecc, (u32 *) host->ecc_buf, chip->ecc.steps);
+
+       /* Pointer to ECC data retrieved from NAND spare area */
+       oobecc = chip->oob_poi + chip->ecc.layout->eccpos[0];
+
+       for (i = 0; i < chip->ecc.steps; i++) {
+               stat = chip->ecc.correct(mtd, buf, oobecc,
+                                        &tmpecc[i * chip->ecc.bytes]);
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+
+               buf += chip->ecc.size;
+               oobecc += chip->ecc.bytes;
+       }
+
+       return status;
+}
+
+/*
+ * Read the data and OOB data from the device, no ECC correction with the
+ * data or OOB data
+ */
+static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd,
+                                              struct nand_chip *chip,
+                                              u8 *buf, int page)
+{
+       /* Issue read command */
+       chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+
+       /* Raw reads can just use the FIFO interface */
+       chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
+       chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+       return 0;
+}
+
+/*
+ * Write the data and OOB data to the device, use ECC with the data,
+ * disable ECC for the OOB data
+ */
+static void lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd,
+                                            struct nand_chip *chip,
+                                            const u8 *buf)
+{
+       struct lpc32xx_nand_host *host = chip->priv;
+       u8 *pb = chip->oob_poi + chip->ecc.layout->eccpos[0];
+
+       /* Write data, calculate ECC on outbound data */
+       lpc32xx_xfer(mtd, (u8 *)buf, chip->ecc.steps, 0);
+
+       /*
+        * The calculated ECC needs some manual work done to it before
+        * committing it to NAND. Process the calculated ECC and place
+        * the resultant values directly into the OOB buffer. */
+       lpc32xx_slc_ecc_copy(pb, (u32 *)host->ecc_buf, chip->ecc.steps);
+
+       /* Write ECC data to device */
+       chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+/*
+ * Write the data and OOB data to the device, no ECC correction with the
+ * data or OOB data
+ */
+static void lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd,
+                                                struct nand_chip *chip,
+                                                const u8 *buf)
+{
+       /* Raw writes can just use the FIFO interface */
+       chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps);
+       chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+}
+
+static bool lpc32xx_dma_filter(struct dma_chan *chan, void *param)
+{
+       struct pl08x_dma_chan *ch =
+               container_of(chan, struct pl08x_dma_chan, chan);
+
+       /* In LPC32xx's PL080 DMA wiring, the NAND DMA signal is #1 */
+       if (ch->cd->min_signal == 1)
+               return true;
+       return false;
+}
+
+/*
+ * Get DMA channel and allocate DMA descriptors memory.
+ * Prepare DMA descriptors link lists
+ */
+static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host)
+{
+       struct mtd_info *mtd = &host->mtd;
+       dma_cap_mask_t mask;
+
+       dma_cap_zero(mask);
+       dma_cap_set(DMA_SLAVE, mask);
+       host->dma_chan = dma_request_channel(mask, lpc32xx_dma_filter, NULL);
+       if (!host->dma_chan) {
+               dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
+               return -EBUSY;
+       }
+       if (dma_set_mask(host->dma_chan->device->dev, 0xFFFFFFFF)) {
+               dev_err(mtd->dev.parent, "Failed to set dma mask\n");
+               goto out1;
+       }
+
+       return 0;
+out1:
+       dma_release_channel(host->dma_chan);
+       return -ENXIO;
+}
+
+#ifdef CONFIG_OF
+static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
+{
+       struct lpc32xx_nand_cfg_slc *pdata;
+       struct device_node *np = dev->of_node;
+
+       pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
+       if (!pdata) {
+               dev_err(dev, "could not allocate memory for platform data\n");
+               return NULL;
+       }
+
+       of_property_read_u32(np, "nxp,wdr-clks", &pdata->wdr_clks);
+       of_property_read_u32(np, "nxp,wwidth", &pdata->wwidth);
+       of_property_read_u32(np, "nxp,whold", &pdata->whold);
+       of_property_read_u32(np, "nxp,wsetup", &pdata->wsetup);
+       of_property_read_u32(np, "nxp,rdr-clks", &pdata->rdr_clks);
+       of_property_read_u32(np, "nxp,rwidth", &pdata->rwidth);
+       of_property_read_u32(np, "nxp,rhold", &pdata->rhold);
+       of_property_read_u32(np, "nxp,rsetup", &pdata->rsetup);
+
+       if (!pdata->wdr_clks || !pdata->wwidth || !pdata->whold ||
+           !pdata->wsetup || !pdata->rdr_clks || !pdata->rwidth ||
+           !pdata->rhold || !pdata->rsetup) {
+               dev_err(dev, "chip parameters not specified correctly\n");
+               return NULL;
+       }
+
+       pdata->use_bbt = of_get_nand_on_flash_bbt(np);
+       pdata->wp_gpio = of_get_named_gpio_flags(np, "gpios", 0, NULL);
+
+       return pdata;
+}
+#else
+static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev)
+{
+       return NULL;
+}
+#endif
+
+/*
+ * Probe for NAND controller
+ */
+static int __devinit lpc32xx_nand_probe(struct platform_device *pdev)
+{
+       struct lpc32xx_nand_host *host;
+       struct mtd_info *mtd;
+       struct nand_chip *chip;
+       struct resource *rc;
+       struct mtd_part_parser_data ppdata = {};
+       int res;
+
+       rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       if (rc == NULL) {
+               dev_err(&pdev->dev, "No memory resource found for device\n");
+               return -EBUSY;
+       }
+
+       /* Allocate memory for the device structure (and zero it) */
+       host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
+       if (!host) {
+               dev_err(&pdev->dev, "failed to allocate device structure\n");
+               return -ENOMEM;
+       }
+       host->io_base_dma = rc->start;
+
+       host->io_base = devm_request_and_ioremap(&pdev->dev, rc);
+       if (host->io_base == NULL) {
+               dev_err(&pdev->dev, "ioremap failed\n");
+               return -ENOMEM;
+       }
+
+       if (pdev->dev.of_node)
+               host->ncfg = lpc32xx_parse_dt(&pdev->dev);
+       else
+               host->ncfg = pdev->dev.platform_data;
+       if (!host->ncfg) {
+               dev_err(&pdev->dev, "Missing platform data\n");
+               return -ENOENT;
+       }
+       if (gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
+               dev_err(&pdev->dev, "GPIO not available\n");
+               return -EBUSY;
+       }
+       lpc32xx_wp_disable(host);
+
+       mtd = &host->mtd;
+       chip = &host->nand_chip;
+       chip->priv = host;
+       mtd->priv = chip;
+       mtd->owner = THIS_MODULE;
+       mtd->dev.parent = &pdev->dev;
+
+       /* Get NAND clock */
+       host->clk = clk_get(&pdev->dev, NULL);
+       if (IS_ERR(host->clk)) {
+               dev_err(&pdev->dev, "Clock failure\n");
+               res = -ENOENT;
+               goto err_exit1;
+       }
+       clk_enable(host->clk);
+
+       /* Set NAND IO addresses and command/ready functions */
+       chip->IO_ADDR_R = SLC_DATA(host->io_base);
+       chip->IO_ADDR_W = SLC_DATA(host->io_base);
+       chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl;
+       chip->dev_ready = lpc32xx_nand_device_ready;
+       chip->chip_delay = 20; /* 20us command delay time */
+
+       /* Init NAND controller */
+       lpc32xx_nand_setup(host);
+
+       platform_set_drvdata(pdev, host);
+
+       /* NAND callbacks for LPC32xx SLC hardware */
+       chip->ecc.mode = NAND_ECC_HW_SYNDROME;
+       chip->read_byte = lpc32xx_nand_read_byte;
+       chip->read_buf = lpc32xx_nand_read_buf;
+       chip->write_buf = lpc32xx_nand_write_buf;
+       chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome;
+       chip->ecc.read_page = lpc32xx_nand_read_page_syndrome;
+       chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome;
+       chip->ecc.write_page = lpc32xx_nand_write_page_syndrome;
+       chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome;
+       chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome;
+       chip->ecc.calculate = lpc32xx_nand_ecc_calculate;
+       chip->ecc.correct  = nand_correct_data;
+       chip->ecc.hwctl = lpc32xx_nand_ecc_enable;
+       chip->verify_buf = lpc32xx_verify_buf;
+
+       /*
+        * Allocate a large enough buffer for a single huge page plus
+        * extra space for the spare area and ECC storage area
+        */
+       host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE;
+       host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len,
+                                     GFP_KERNEL);
+       if (host->data_buf == NULL) {
+               dev_err(&pdev->dev, "Error allocating memory\n");
+               res = -ENOMEM;
+               goto err_exit2;
+       }
+
+       res = lpc32xx_nand_dma_setup(host);
+       if (res) {
+               res = -EIO;
+               goto err_exit2;
+       }
+
+       /* Find NAND device */
+       if (nand_scan_ident(mtd, 1, NULL)) {
+               res = -ENXIO;
+               goto err_exit3;
+       }
+
+       /* OOB and ECC CPU and DMA work areas */
+       host->ecc_buf = (u32 *)(host->data_buf + LPC32XX_DMA_DATA_SIZE);
+
+       /*
+        * Small page FLASH has a unique OOB layout, but large and huge
+        * page FLASH use the standard layout. Small page FLASH uses a
+        * custom BBT marker layout.
+        */
+       if (mtd->writesize <= 512)
+               chip->ecc.layout = &lpc32xx_nand_oob_16;
+
+       /* These sizes remain the same regardless of page size */
+       chip->ecc.size = 256;
+       chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES;
+       chip->ecc.prepad = chip->ecc.postpad = 0;
+
+       /* Avoid extra scan if using BBT, setup BBT support */
+       if (host->ncfg->use_bbt) {
+               chip->options |= NAND_SKIP_BBTSCAN;
+               chip->bbt_options |= NAND_BBT_USE_FLASH;
+
+               /*
+                * Use a custom BBT marker setup for small page FLASH that
+                * won't interfere with the ECC layout. Large and huge page
+                * FLASH use the standard layout.
+                */
+               if (mtd->writesize <= 512) {
+                       chip->bbt_td = &bbt_smallpage_main_descr;
+                       chip->bbt_md = &bbt_smallpage_mirror_descr;
+               }
+       }
+
+       /*
+        * Fills out all the uninitialized function pointers with the defaults
+        */
+       if (nand_scan_tail(mtd)) {
+               res = -ENXIO;
+               goto err_exit3;
+       }
+
+       /* Standard layout in FLASH for bad block tables */
+       if (host->ncfg->use_bbt) {
+               if (nand_default_bbt(mtd) < 0)
+                       dev_err(&pdev->dev,
+                              "Error initializing default bad block tables\n");
+       }
+
+       mtd->name = "nxp_lpc3220_slc";
+       ppdata.of_node = pdev->dev.of_node;
+       res = mtd_device_parse_register(mtd, NULL, &ppdata, host->ncfg->parts,
+                                       host->ncfg->num_parts);
+       if (!res)
+               return res;
+
+       nand_release(mtd);
+
+err_exit3:
+       dma_release_channel(host->dma_chan);
+err_exit2:
+       clk_disable(host->clk);
+       clk_put(host->clk);
+       platform_set_drvdata(pdev, NULL);
+err_exit1:
+       lpc32xx_wp_enable(host);
+       gpio_free(host->ncfg->wp_gpio);
+
+       return res;
+}
+
+/*
+ * Remove NAND device.
+ */
+static int __devexit lpc32xx_nand_remove(struct platform_device *pdev)
+{
+       u32 tmp;
+       struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+       struct mtd_info *mtd = &host->mtd;
+
+       nand_release(mtd);
+       dma_release_channel(host->dma_chan);
+
+       /* Force CE high */
+       tmp = readl(SLC_CTRL(host->io_base));
+       tmp &= ~SLCCFG_CE_LOW;
+       writel(tmp, SLC_CTRL(host->io_base));
+
+       clk_disable(host->clk);
+       clk_put(host->clk);
+       platform_set_drvdata(pdev, NULL);
+       lpc32xx_wp_enable(host);
+       gpio_free(host->ncfg->wp_gpio);
+
+       return 0;
+}
+
+#ifdef CONFIG_PM
+static int lpc32xx_nand_resume(struct platform_device *pdev)
+{
+       struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+
+       /* Re-enable NAND clock */
+       clk_enable(host->clk);
+
+       /* Fresh init of NAND controller */
+       lpc32xx_nand_setup(host);
+
+       /* Disable write protect */
+       lpc32xx_wp_disable(host);
+
+       return 0;
+}
+
+static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
+{
+       u32 tmp;
+       struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
+
+       /* Force CE high */
+       tmp = readl(SLC_CTRL(host->io_base));
+       tmp &= ~SLCCFG_CE_LOW;
+       writel(tmp, SLC_CTRL(host->io_base));
+
+       /* Enable write protect for safety */
+       lpc32xx_wp_enable(host);
+
+       /* Disable clock */
+       clk_disable(host->clk);
+
+       return 0;
+}
+
+#else
+#define lpc32xx_nand_resume NULL
+#define lpc32xx_nand_suspend NULL
+#endif
+
+#if defined(CONFIG_OF)
+static const struct of_device_id lpc32xx_nand_match[] = {
+       { .compatible = "nxp,lpc3220-slc" },
+       { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
+#endif
+
+static struct platform_driver lpc32xx_nand_driver = {
+       .probe          = lpc32xx_nand_probe,
+       .remove         = __devexit_p(lpc32xx_nand_remove),
+       .resume         = lpc32xx_nand_resume,
+       .suspend        = lpc32xx_nand_suspend,
+       .driver         = {
+               .name   = LPC32XX_MODNAME,
+               .owner  = THIS_MODULE,
+               .of_match_table = of_match_ptr(lpc32xx_nand_match),
+       },
+};
+
+module_platform_driver(lpc32xx_nand_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Kevin Wells <kevin.we...@nxp.com>");
+MODULE_AUTHOR("Roland Stigge <sti...@antcom.de>");
+MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");
_______________________________________________
devicetree-discuss mailing list
devicetree-discuss@lists.ozlabs.org
https://lists.ozlabs.org/listinfo/devicetree-discuss

Reply via email to