If I have a simple fixed-size matrix and I need to linearize (flatten) it, the function join() seems to not not work:
import std.array: join; void main() { int[4][4] table; join(table); } test.d(4): Error: template std.array.join(RoR,R) if (isInputRange!(RoR) && isInputRange!(ElementType!(RoR)) && isForwardRange!(R) && is(Unqual!(ElementType!(ElementType!(RoR))) == Unqual!(ElementType!(R)))) does not match any function template declaration test.d(4): Error: template std.array.join(RoR,R) if (isInputRange!(RoR) && isInputRange!(ElementType!(RoR)) && isForwardRange!(R) && is(Unqual!(ElementType!(ElementType!(RoR))) == Unqual!(ElementType!(R)))) cannot deduce template function from argument types !()(int[4u][4u]) This too doesn't work: join(table[]); This compiles: join(map!q{ a[] }(table[])); But this program shows there is something wrong (I know what's wrong), it prints: [6, 4219787, 4, 6, 4219787, 4] import std.stdio: writeln; import std.algorithm: map; import std.array: join; void main() { int[3][2] table = [[1,2,3],[4,5,6]]; int[] result = join(map!q{ a[] }(table[])); writeln(result); } This prints the right output, but it allocates lot of memory: [1, 2, 3, 4, 5, 6] import std.stdio: writeln; import std.algorithm: map; import std.array: join; void main() { int[3][2] table = [[1,2,3],[4,5,6]]; int[] result2 = join(map!q{ a.dup }(table[])); writeln(result2); } Do you have better suggestions? Is the function join() worth fixing/changing to improve this use case? Bye, bearophile