nobody wrote:
$ g++     alloc.cpp   -o alloc
$ time ./alloc
real    0m1.946s
user    0m1.688s
sys     0m0.256s

$ dmd -O -release allocd.d
$ time ./allocd
real    0m22.734s
user    0m22.353s
sys     0m0.360s

$ cat alloc.cpp
#include <vector>

typedef std::vector<int> intvec;
typedef intvec* intvecp;

int main() {
  int i, n = 20000000;
  intvecp* iva;
  iva = new intvecp[n];
  for (i = n; i-- > 0; ) {
    iva[i] = new intvec();
  }

  return 0;
}

$ cat allocd.d
int main() {
  int i, n = 20000000;
  Object[] oa;
  oa = new Object[n];
  for (i = n; i-- > 0; ) {
    oa[i] = new Object();
  }

  return 0;
}

I use this a structure for arena-based memory allocation (attached).

Example of use:

import candy.util.MemPool

MemStack!() stack;

class MyObject
{
        mixin MemPoolNew!(stack);
}

int main()
{
        stack.push();
        int i, n = 20000000;
        MyObject[] oa;
        oa = new MyObject[n];
        for (i = n; i-- > 0; )
        {
                oa[i] = new MyObject();
        }
        stack.pop();
        return 0;
}

The push() and pop() allows memory to be allocated and deallocated as large blocks. However, you shouldn't need to deallocate manually -- it's GCed memory, so ideally the GC should free it when it's no longer referenced. That being said, I've run some tests, and the GC will free it *eventually*, but it allocates 4-6x as much memory as it needs before it starts freeing it, even when GC.collect() is called manually.

--------------------

/**
 * Provides a pool of GCed memory to allocate things from a block.
 * This maintains cache coherency for related types (i.e. tree nodes).
 * It doesn't garuntee any ordering, though, the array struct should be
 * used for that. Also, everything has to be freed at once, freeing one
 * portion of this has no effect.
 *
 * Based on a similar concept posted by bearophile at:
* http://www.digitalmars.com/webnews/newsgroups.php?art_group=digitalmars.D&article_id=88227
 */
public struct MemPool(size_t BLOCK_SIZE = 1 << 14)
{
    private void* next; // Next available block
    private void* end;  // End of the current block
    private void*[] blocks;

    public void* alloc(size_t sz)
    {
sz = ((sz + 7) & ~7); // Next multiple of 8 if this isn't a multiple of 8
        if (this.next + sz >= this.end)
        {
                void* blk = GC.calloc(BLOCK_SIZE);
                this.blocks.length = this.blocks.length + 1;
                this.blocks[$ - 1] = blk;
                this.next = blk;
                this.end = blk + BLOCK_SIZE;
        }

        void* ret = this.next;
        this.next += sz;
        return ret;
    }

    public void free()
    {
        foreach(blk; this.blocks)
                GC.free(blk);
        this.blocks = null;
        this.blocks.length = 0;
        this.next = null;
        this.end = null;
    }
}

/**
 * Wrapper for MemPool that allocates the given struct
 */
public struct StructPool(T)
{
        private MemPool!() pool;
        public T* alloc()  { return cast(T*) pool.alloc(T.sizeof); }
}

public struct MemStack(size_t BLOCK_SIZE = 1 << 14)
{
        private Stack!(MemPool!(BLOCK_SIZE)*, 16, true, true) stack;
        public static const size_t MAX_ALLOC = BLOCK_SIZE;
        
        public void* alloc(size_t sz) { return stack.peek().alloc(sz);          
}
        public void  push()           { stack.push(new MemPool!(BLOCK_SIZE));   
}
        public void  pop()            { stack.pop().free();                     
}
}

/**
* Placement new mixin for allocating from a memory pool. Benchmarks show this
 * as faster than the D new in real usage (i.e. the parser runs about 1.2x
 * faster using this).
 */
public template MemPoolNew(alias Pool)
{
        version(NoMemPool) { } else
        {
                public final new(uint sz)    { return Pool.alloc(sz); }
                public final delete(void *p) {                        }
        }
}

Reply via email to