Hi Gregor,

Thanks much for the tests - I've been thinking we needed something like 
that.

As you note, turtlenew should really be called 
turtle-with-a-few-minor-fxes-and-enhancements, but that was too long to 
type. ;)

Your suggestions make sense. Based on everyone's suggestions I'm just 
about done with an updated version, which I should have ready by the 
weekend. I've had a bit of flu so haven't been able to think clearly 
enough to pull it all together.

As to the circle and fill problem, we may not find a fix for this first 
submission.

Cheers,
Vern

Gregor Lingl wrote:
> Hi Vern, hi everybody!
> 
> I've had a look to turtlenew - which in fact has not very much new stuff ...
> 
> I provide a set of sample programs, sort of test, which I use to use as 
> test cases with my (X)turtle module - work inprogress .. I've modified 
> them, so they work with turtlenew.
> 
> Just save them together with turtlenew2.py in a directory and run them 
> from within IDLE (or uncomment the mainloop - call). All of them except 
> demo.py will also run with turtlenew.py
> 
> I've - as a proposition - added one function to turtlenew: 
> towards(*args), which returns the angle between the line from the turtle 
>      to the arg and the positive x-axis-direction. As a demo it's used 
> in demo.py. (The idea is of course taken from Logo, where it is also 
> present) This method uses atan2. So it's not elementary and young 
> students won't be able to program it on their own. So I consider it 
> rather essential. (In fact I incorporated it also into my book-specific 
> turtle.py three years ago - which was also a moderate extension of the 
> original one.)
> 
> I've also changed one line in the speed-method  just for aesthetic 
> reasons. (Line 317 intutlenew2.py)
> 
> If hope you appreciate these changes, and I'd like to see them 
> integrated into turtle.py
> 
> Imho there is one serious problem with circle and fill - they don't fit 
> together. You can observe this with the yinyang - program and with 
> demo.py . They simply do not work as everybody would naturally expect.
> 
> I fear this could only be solved by abandoning the use of the arc items 
> of the canvas widget.
> 
> Regards,
> Gregor
> 
> 
> 
> 
> 
> ------------------------------------------------------------------------
> 
> # Xturtle ==> turtle example
> # yinyang
> 
> # NOTE:  In the first import statement
> # replace Xturtle by turtle to see, how
> # the original turtle acts here.
> 
> from turtlenew2 import *
> from Tkinter import mainloop
> 
> def yin(radius, farbe1, farbe2):
>     width(3)
>     color("black")
>     fill(1)
>     circle(radius/2., 180)
>     circle(radius, 180)
>     left(180)
>     circle(-radius/2., 180)
>     color(farbe1)
>     fill(1)
>     left(90)
>     up()
>     forward(radius*0.375)
>     right(90)
>     down()
>     circle(radius*0.125)
>     left(90)
>     color(farbe2)
>     fill(1)
>     up()
>     backward(radius*0.375)
>     down()
>     left(90)
> 
> reset()
> yin(100, "white", "black")
> yin(100, "black", "white")
> 
> #mainloop()
> 
> 
> ------------------------------------------------------------------------
> 
> from turtlenew2 import *        
> from Tkinter  import mainloop
> from time import sleep
> 
> def demo1():
>     # demo des alten turtle-Moduls
>     reset()
>     tracer(1)
>     up()
>     backward(100)
>     down()
>     # draw 3 squares; the last filled
>     width(3)
>     for i in range(3):
>         if i == 2:
>             fill(1)
>         for j in range(4):
>             forward(20)
>             left(90)
>         if i == 2:
>             color("maroon")
>             fill(0)
>         up()
>         forward(30)
>         down()
>     width(1)
>     color("black")
>     # move out of the way
>     tracer(0)
>     up()
>     right(90)
>     forward(100)
>     right(90)
>     forward(100)
>     right(180)
>     down()
>     # some text
>     write("startstart", 1)
>     write("start", 1)
>     color("red")
>     # staircase
>     for i in range(5):
>         forward(20)
>         left(90)
>         forward(20)
>         right(90)
>     # filled staircase
>     fill(1)
>     for i in range(5):
>         forward(20)
>         left(90)
>         forward(20)
>         right(90)
>     fill(0)
>     # more text
>     write("wait a moment...")
>     tracer(1)
> 
> def demo2():
>     # einige weitere und einige neue features
>     speed(1)
> ##    st()
>     width(3)
>     setheading(towards(0,0))
>     x,y = position()
>     r = (x**2+y**2)**.5/2.0
>     right(90)
>     pendown = True
>     for i in range(18):
>         if pendown:
>             up()
>             pendown = False
>         else:
>             down()
>             pendown = True
>         circle(r,10)
>     sleep(2)
>    
>     reset() 
>     left(90)
> 
>     l = 10
>     color("green")
>     width(3)
>     left(180)
>     sp = 1
>     for i in range(-2,16):
>         if i > 0:
>             color(1.0-0.05*i,0,0.05*i)
>             fill(1)
>             color("green")
>         for j in range(3):
>             forward(l)
>             left(120)
>         l += 10
>         left(15)
>         if sp < 4:
>             sp = sp+1
>             speed(sp)
>     color(0.25,0,0.75)
>     fill(0)
>     color("green")
> 
>     left(120)
>     up()
>     forward(70)
>     right(30)
>     down()
>     color("red")
>     speed(0)
>     fill(1)
>     for i in range(4):
>         circle(50,90)
>         right(90)
>         forward(30)
>         right(90)
>     color("yellow")
>     fill(0)
>     color("red")
>     left(90)
>     up(); forward(30); down(); # setshape(1)
> 
> ##    tri = turtles()[0]
>     turtle=Pen()
> ##    turtle.setshape(1)
> ####    turtle.mode("logo")
>     turtle.reset()
>     turtle.left(90)
>     turtle.speed(2)
>     turtle.up()
>     turtle.goto(280,40)
>     turtle.left(24)
>     turtle.down()
>     turtle.speed(2)
>     turtle.color("blue")
>     turtle.width(2)
>     speed(4)
> ##    setheading(towards(*turtle.position()))  ## for simple towards
>     setheading(towards(turtle))
>     while ( abs(position()[0]-turtle.position()[0])>4 or
>             abs(position()[1]-turtle.position()[1])>4):
>         turtle.forward(3.5)
>         turtle.left(0.6)
> ##        setheading(towards(*turtle.position()))
>         setheading(towards(turtle))
>         forward(4)
>     write("CAUGHT! ", move=True)
> 
> 
> demo1()
> demo2()
> 
> #mainloop()
> 
> 
> ------------------------------------------------------------------------
> 
> ## NT - Die neue Turtle-Grafik
> ##
> #######################################
> ## Nfilltest.py  ---
> ## urspruenglich ein Testprogramm in NT.py
> #######################################
> ##
> ## Autor: Gregor Lingl
> ## Datum: 16. 3. 2006
> 
> 
> from turtlenew2 import Pen
> from Tkinter import mainloop    
>     
> t = Pen()
> t.left(90)
> t.speed(1)
> 
> l = 210
> t.up()
> t.backward(20)
> t.down()
> 
> ## 1. triangle
> 
> t.right(30)
> t.width(3)
> 
> t.fill(True)
> for i in 1,2,3:
>     t.color("red")
>     t.forward(l/3.)
>     t.color("green")
>     t.forward(l/3.)
>     t.color("blue")
>     t.forward(l/3.)
>     t.left(120)
> t.color(.8,.8,1)
> t.fill(False)
> 
> t.left(30)
> 
> ## 2. triangle
> 
> t.left(60)
> 
> t.color("blue")
> t.fill(True)
> t.width(10)
> 
> for i in 1,2,3:
>     t.forward(l)
>     t.left(120)
> t.color("red")
> t.fill(False)
> 
> t.left(30)
> 
> ## 3. triangle
> 
> t.left(60)
> t.up()
> t.fill(True)
> for i in 1,2,3:
>     t.forward(l)
>     t.left(120)
> t.color(0.7,0,0.7)
> t.fill(False)
> t.down()
> t.left(30)
> 
> ## Change screencolor
> 
> # t.screen.screencolor("yellow")
> 
> ## 4. triangle    
> 
> t.left(60)
> 
> t.speed(1)
> t.color("green")
> t.fill(True)
> for i in 1,2,3:
>     #if i==2: t.hideturtle()
>     t.width(2+3*i)
>     t.forward(l/3.0)
>     t.up()
>     t.left(60)
>     t.forward(l/6.0)
>     t.right(120)
>     t.forward(l/3.0)
>     t.left(120)
>     t.forward(l/6.0)
>     t.right(60)
>     t.down()
>     t.forward(l/3.0)
>     # if i==2: t.showturtle()
>     t.left(120)
> t.color("red")
> t.fill(True)
> 
> t.left(30)
> 
> ## original heading
> 
> t.left(90)
> t.speed(2)
> t.up()
> t.forward(l/3**0.5)
> #mainloop()
> 
> 
> ------------------------------------------------------------------------
> 
> # Autor: Rudolf Zeidler
> # Datum: 01.12.2004
> # radioaktiv.py: Zeichnet ein radioaktiv-Gefahrensymbol
> 
> # doesn't use the color-capabilities of Xturtle in order
> # to work also with turtle.py
> 
> 
> # NOTE:  In the first import statement
> # replace Xturtle by turtle to see, how
> # (buggy) the turtle acts here, when trying to
> # fill sectors
> 
> from turtlenew import *
> from Tkinter import mainloop
> 
> def quadrat(laenge):
>     for i in range(4):
>         forward(laenge)
>         left(90)
> 
> def kreisSektor(radius, winkel):
>     forward(radius)
>     left(90)
>     circle(radius, winkel)
>     left(90)
>     forward(radius)
>     left(120)
> 
> def move(x, y):
>     up()
>     forward(x)
>     left(90)
>     forward(y)
>     left(-90)
>     down()
> 
> def radioaktiv(radius1, radius2, seite, winkel = 60, randFarbe = "black", 
> fuellFarbe = "yellow"):
>     color(randFarbe)
>     move(-(seite / 2) , -(seite / 2))
>     
>     fill(1)
>     quadrat(seite)
>     color(fuellFarbe)
>     fill(0)
>     move((seite / 2), (seite / 2))
>     color(randFarbe)
>     right(90 + winkel / 2)
> 
>     for i in range(3):
>         fill(1)
>         kreisSektor(radius1,winkel)
>         left((360 - 3 * winkel)/3 + 60)
>         color(randFarbe)
>         fill(0)
> 
>     up()
>     forward(radius2)
>     left(90)
>     down()
> 
>     color(fuellFarbe)
>     fill(1)
>     circle(radius2)
>     color(randFarbe)
>     fill(0)
> 
>     up()
>     left(90)
>     forward(radius2)
>     width(1)
> 
> reset()
> width(5)
> radioaktiv(80, 15, 200) 
> #mainloop()
> 
> 
> 
> 
> 
> 
> ------------------------------------------------------------------------
> 
> #Gregor Lingl
> #14.12.2005
> #sierpinski_dreieck.py
> 
> from turtlenew2 import *
> from Tkinter import mainloop
> 
> class Vec3(tuple):
> 
>     def __new__(cls, x, y, z):
>         return tuple.__new__(cls, (x, y, z))
>     def __add__(self, other):
>         return Vec3(self[0]+other[0], self[1]+other[1], self[2]+other[2])
>     def __mul__(self, other):
>         return Vec3(self[0]*other, self[1]*other, self[2]*other)
>     def __rmul__(self, other):
>         return Vec3(self[0]*other, self[1]*other, self[2]*other)
>     def __sub__(self, other):
>         return Vec3(self[0]-other[0], self[1]-other[1], self[2]-other[2])
>     def __div__(self, other):
>         other = float(other)
>         return Vec3(self[0]/other, self[1]/other, self[2]/other)
>     def __neg__(self):
>         return Vec3(-self[0], -self[1], -self[2])
>     def __repr__(self):
>         return "(%.2f,%.2f,%.2f)" % self 
> 
> 
>   
> def dreieck(laenge, stufe, f1, f2, f3):  # f1, f2, f3 Farben der Ecken
>     if stufe == 0:
>         color((f1+f2+f3)/3)
>         down()
>         fill(1)
>         for i in range(3):
>             forward(laenge)
>             left(120)
>         fill(0)
>         up()
>     else:
>         c12 = (f1+f2)/2
>         c13 = (f1+f3)/2
>         c23 = (f2+f3)/2
>         dreieck(laenge / 2, stufe - 1, f1, c12, c13)
>         forward(laenge)
>         left(120)
>         dreieck(laenge / 2, stufe - 1, f2, c23, c12)
>         forward(laenge)
>         left(120)
>         dreieck(laenge / 2, stufe - 1, f3, c13, c23)
>         forward(laenge)
>         left(120)
> 
> reset()
> speed(0)
> up()
> backward(240)
> left(90)
> backward(200)
> right(90)
> down()
> tracer(1)
> speed(4)
> dreieck(480, 5, Vec3(1.0,0,0), Vec3(0,1.0,0), Vec3(0,0,1.0))
> #mainloop()
> 
> 
> ------------------------------------------------------------------------
> 
> # LogoMation-like turtle graphics
> 
> from math import * # Also for export
> import Tkinter
> 
> class Error(Exception):
>     pass
> 
> _delay = 10      # default delay for drawing
> 
> class RawPen:
> 
>     def __init__(self, canvas):
>         self._canvas = canvas
>         self._items = []
>         self._tracing = 1
>         self._arrow = 0
>         self._delay = _delay
>         self.degrees()
>         self.reset()
> 
>     def degrees(self, fullcircle=360.0):
>         self._fullcircle = fullcircle
>         self._invradian = pi / (fullcircle * 0.5)
> 
>     def radians(self):
>         self.degrees(2.0*pi)
> 
>     def reset(self):
>         canvas = self._canvas
>         self._canvas.update()
>         width = canvas.winfo_width()
>         height = canvas.winfo_height()
>         if width <= 1:
>             width = canvas['width']
>         if height <= 1:
>             height = canvas['height']
>         self._origin = float(width)/2.0, float(height)/2.0
>         self._position = self._origin
>         self._angle = 0.0
>         self._drawing = 1
>         self._width = 1
>         self._color = "black"
>         self._filling = 0
>         self._path = []
>         self._tofill = []
>         self.clear()
>         canvas._root().tkraise()
> 
>     def clear(self):
>         self.fill(0)
>         canvas = self._canvas
>         items = self._items
>         self._items = []
>         for item in items:
>             canvas.delete(item)
>         self._delete_turtle()
>         self._draw_turtle()
> 
>     def tracer(self, flag):
>         self._tracing = flag
>         if not self._tracing:
>             self._delete_turtle()
>         self._draw_turtle()
> 
>     def forward(self, distance):
>         x0, y0 = start = self._position
>         x1 = x0 + distance * cos(self._angle*self._invradian)
>         y1 = y0 - distance * sin(self._angle*self._invradian)
>         self._goto(x1, y1)
> 
>     def backward(self, distance):
>         self.forward(-distance)
> 
>     def left(self, angle):
>         self._angle = (self._angle + angle) % self._fullcircle
>         self._draw_turtle()
> 
>     def right(self, angle):
>         self.left(-angle)
> 
>     def up(self):
>         self._drawing = 0
> 
>     def down(self):
>         self._drawing = 1
> 
>     def width(self, width):
>         self._width = float(width)
> 
>     def color(self, *args):
>         if not args:
>             raise Error, "no color arguments"
>         if len(args) == 1:
>             color = args[0]
>             if type(color) == type(""):
>                 # Test the color first
>                 try:
>                     id = self._canvas.create_line(0, 0, 0, 0, fill=color)
>                 except Tkinter.TclError:
>                     raise Error, "bad color string: %r" % (color,)
>                 self._set_color(color)
>                 return
>             try:
>                 r, g, b = color
>             except:
>                 raise Error, "bad color sequence: %r" % (color,)
>         else:
>             try:
>                 r, g, b = args
>             except:
>                 raise Error, "bad color arguments: %r" % (args,)
>         assert 0 <= r <= 1
>         assert 0 <= g <= 1
>         assert 0 <= b <= 1
>         x = 255.0
>         y = 0.5
>         self._set_color("#%02x%02x%02x" % (int(r*x+y), int(g*x+y), 
> int(b*x+y)))
> 
>     def _set_color(self,color):
>         self._color = color
>         self._draw_turtle()
> 
>     def write(self, arg, move=0):
>         x, y = start = self._position
>         x = x-1 # correction -- calibrated for Windows
>         item = self._canvas.create_text(x, y,
>                                         text=str(arg), anchor="sw",
>                                         fill=self._color)
>         self._items.append(item)
>         if move:
>             x0, y0, x1, y1 = self._canvas.bbox(item)
>             self._goto(x1, y1)
>         self._draw_turtle()
> 
>     def fill(self, flag):
>         if self._filling:
>             path = tuple(self._path)
>             smooth = self._filling < 0
>             if len(path) > 2:
>                 item = self._canvas._create('polygon', path,
>                                             {'fill': self._color,
>                                              'smooth': smooth})
>                 self._items.append(item)
>                 if self._tofill:
>                     for item in self._tofill:
>                         self._canvas.itemconfigure(item, fill=self._color)
>                         self._items.append(item)
>         self._path = []
>         self._tofill = []
>         self._filling = flag
>         if flag:
>             self._path.append(self._position)
>         self.forward(0)
> 
>     def circle(self, radius, extent=None):
>         if extent is None:
>             extent = self._fullcircle
>         x0, y0 = self._position
>         xc = x0 - radius * sin(self._angle * self._invradian)
>         yc = y0 - radius * cos(self._angle * self._invradian)
>         if radius >= 0.0:
>             start = self._angle - 90.0
>         else:
>             start = self._angle + 90.0
>             extent = -extent
>         if self._filling:
>             if abs(extent) >= self._fullcircle:
>                 item = self._canvas.create_oval(xc-radius, yc-radius,
>                                                 xc+radius, yc+radius,
>                                                 width=self._width,
>                                                 outline="")
>                 self._tofill.append(item)
>             item = self._canvas.create_arc(xc-radius, yc-radius,
>                                            xc+radius, yc+radius,
>                                            style="chord",
>                                            start=start,
>                                            extent=extent,
>                                            width=self._width,
>                                            outline="")
>             self._tofill.append(item)
>         if self._drawing:
>             if abs(extent) >= self._fullcircle:
>                 item = self._canvas.create_oval(xc-radius, yc-radius,
>                                                 xc+radius, yc+radius,
>                                                 width=self._width,
>                                                 outline=self._color)
>                 self._items.append(item)
>             item = self._canvas.create_arc(xc-radius, yc-radius,
>                                            xc+radius, yc+radius,
>                                            style="arc",
>                                            start=start,
>                                            extent=extent,
>                                            width=self._width,
>                                            outline=self._color)
>             self._items.append(item)
>         angle = start + extent
>         x1 = xc + abs(radius) * cos(angle * self._invradian)
>         y1 = yc - abs(radius) * sin(angle * self._invradian)
>         self._angle = (self._angle + extent) % self._fullcircle
>         self._position = x1, y1
>         if self._filling:
>             self._path.append(self._position)
>         self._draw_turtle()
> 
>     def heading(self):
>         return self._angle
> 
>     def setheading(self, angle):
>         self._angle = angle
>         self._draw_turtle()
> 
>     def window_width(self):
>         width = self._canvas.winfo_width()
>         if width <= 1:  # the window isn't managed by a geometry manager
>             width = self._canvas['width']
>         return width
> 
>     def window_height(self):
>         height = self._canvas.winfo_height()
>         if height <= 1: # the window isn't managed by a geometry manager
>             height = self._canvas['height']
>         return height
> 
>     def position(self):
>         x0, y0 = self._origin
>         x1, y1 = self._position
>         return [x1-x0, -y1+y0]
> 
>     def setx(self, xpos):
>         x0, y0 = self._origin
>         x1, y1 = self._position
>         self._goto(x0+xpos, y1)
> 
>     def sety(self, ypos):
>         x0, y0 = self._origin
>         x1, y1 = self._position
>         self._goto(x1, y0-ypos)
> 
>     def towards(self, *args):
>         """returns the angle, which corresponds to the line
>         from turtle-position to point (x,y).
>         Argument can be two coordinates or one pair of coordinates
>         or a RawPen/Pen instance. 
>         """
>         if len(args) == 2:
>             x, y = args
>         else:
>             arg = args[0]
>             if isinstance(arg, RawPen):
>                 x, y = arg.position()
>             else:
>                 x, y = arg
>         x0, y0 = self.position()
>         dx = x - x0
>         dy = y - y0
>         return (atan2(dy,dx) / self._invradian) % self._fullcircle 
> 
>     def goto(self, *args):
>         if len(args) == 1:
>             try:
>                 x, y = args[0]
>             except:
>                 raise Error, "bad point argument: %r" % (args[0],)
>         else:
>             try:
>                 x, y = args
>             except:
>                 raise Error, "bad coordinates: %r" % (args[0],)
>         x0, y0 = self._origin
>         self._goto(x0+x, y0-y)
> 
>     def _goto(self, x1, y1):
>         x0, y0 = start = self._position
>         self._position = map(float, (x1, y1))
>         if self._filling:
>             self._path.append(self._position)
>         if self._drawing:
>             if self._tracing:
>                 dx = float(x1 - x0)
>                 dy = float(y1 - y0)
>                 distance = hypot(dx, dy)
>                 nhops = int(distance)
>                 item = self._canvas.create_line(x0, y0, x0, y0,
>                                                 width=self._width,
>                                                 capstyle="round",
>                                                 fill=self._color)
>                 try:
>                     for i in range(1, 1+nhops):
>                         x, y = x0 + dx*i/nhops, y0 + dy*i/nhops
>                         self._canvas.coords(item, x0, y0, x, y)
>                         self._draw_turtle((x,y))
>                         self._canvas.update()
>                         self._canvas.after(self._delay)
>                     # in case nhops==0
>                     self._canvas.coords(item, x0, y0, x1, y1)
>                     self._canvas.itemconfigure(item, arrow="none")
>                 except Tkinter.TclError:
>                     # Probably the window was closed!
>                     return
>             else:
>                 item = self._canvas.create_line(x0, y0, x1, y1,
>                                                 width=self._width,
>                                                 capstyle="round",
>                                                 fill=self._color)
>             self._items.append(item)
>         self._draw_turtle()
> 
>     def speed(self, speed=2):
>         """ maps a speed in 4 to 0 to delay given _canvas.after() in
>             _goto()
> 
>             4 is fastests (0 ms delay)
>             2 is default  (10 ms delay)
>             0 is slowest (20 ms delay)"""
> 
> ##        if speed >=0 and speed <=4:    ## more elegantly:
>         if 0 <= speed <=4:    
>             self._delay = 20 - (speed * 5)
> 
>     def _draw_turtle(self,position=[]):
>         if not self._tracing:
>             return
>         if position == []:
>             position = self._position
>         x,y = position
>         distance = 8
>         dx = distance * cos(self._angle*self._invradian)
>         dy = distance * sin(self._angle*self._invradian)
>         self._delete_turtle()
>         self._arrow = self._canvas.create_line(x-dx,y+dy,x,y,
>                                           width=self._width,
>                                           arrow="last",
>                                           capstyle="round",
>                                           fill=self._color)
>         self._canvas.update()
> 
>     def _delete_turtle(self):
>         if self._arrow != 0:
>             self._canvas.delete(self._arrow)
>         self._arrow = 0
> 
> 
> _root = None
> _canvas = None
> _pen = None
> _width = 0.50                  # 50% of window for width
> _height = 0.75                 # 75% of window for height
> _startx = 0                    # start at upper left corner
> _starty = 0
> _title = "Turtle Graphics"     # default title
> 
> class Pen(RawPen):
> 
>     def __init__(self):
>         global _root, _canvas, _width, _height
>         if _root is None:
>             _root = Tkinter.Tk()
>             _root.wm_protocol("WM_DELETE_WINDOW", self._destroy)
>             _root.title(_title)
>             if _width <= 1:
>                 _width = _root.winfo_screenwidth() * _width
>             if _height <= 1:
>                 _height = _root.winfo_screenheight() * _height
>             _root.geometry("%dx%d+%d+%d" % (_width, _height,
>                                             _startx, _starty))
>         if _canvas is None:
>             # XXX Should have scroll bars
>             _canvas = Tkinter.Canvas(_root, background="white")
>             _canvas.pack(expand=1, fill="both")
>         RawPen.__init__(self, _canvas)
> 
>     def _destroy(self):
>         global _root, _canvas, _pen
>         root = self._canvas._root()
>         if root is _root:
>             _pen = None
>             _root = None
>             _canvas = None
>         root.destroy()
> 
> def _getpen():
>     global _pen
>     if not _pen:
>         _pen = Pen()
>     return _pen
> 
> class Turtle(Pen):
>     pass
> 
> def degrees(): _getpen().degrees()
> def radians(): _getpen().radians()
> def reset(): _getpen().reset()
> def clear(): _getpen().clear()
> def tracer(flag): _getpen().tracer(flag)
> def forward(distance): _getpen().forward(distance)
> def backward(distance): _getpen().backward(distance)
> def left(angle): _getpen().left(angle)
> def right(angle): _getpen().right(angle)
> def up(): _getpen().up()
> def down(): _getpen().down()
> def width(width): _getpen().width(width)
> def color(*args): _getpen().color(*args)
> def write(arg, move=0): _getpen().write(arg, move)
> def fill(flag): _getpen().fill(flag)
> def circle(radius, extent=None): _getpen().circle(radius, extent)
> def goto(*args): _getpen().goto(*args)
> def heading(): return _getpen().heading()
> def setheading(angle): _getpen().setheading(angle)
> def position(): return _getpen().position()
> def window_width(): return _getpen().window_width()
> def window_height(): return _getpen().window_height()
> def setx(xpos): _getpen().setx(xpos)
> def sety(ypos): _getpen().sety(ypos)
> def towards(*args): return _getpen().towards(*args)
> def done(): _root.mainloop()
> def speed(speed=2): _getpen().speed(speed)
> def setup(geometry=()):
>     global _width, _height, _startx, _starty
>     if len(geometry) == 4:
>         _width, _height, _startx, _starty = geometry
> def title(title):
>     global _title
>     _title = title
> 
> def demo():
>     reset()
>     tracer(1)
>     up()
>     backward(100)
>     down()
>     # draw 3 squares; the last filled
>     width(3)
>     for i in range(3):
>         if i == 2:
>             fill(1)
>         for j in range(4):
>             forward(20)
>             left(90)
>         if i == 2:
>             color("maroon")
>             fill(0)
>         up()
>         forward(30)
>         down()
>     width(1)
>     color("black")
>     # move out of the way
>     tracer(0)
>     up()
>     right(90)
>     forward(100)
>     right(90)
>     forward(100)
>     right(180)
>     down()
>     # some text
>     write("startstart", 1)
>     write("start", 1)
>     color("red")
>     # staircase
>     for i in range(5):
>         forward(20)
>         left(90)
>         forward(20)
>         right(90)
>     # filled staircase
>     fill(1)
>     for i in range(5):
>         forward(20)
>         left(90)
>         forward(20)
>         right(90)
>     fill(0)
>     # more text
>     write("end")
>     if __name__ == '__main__':
>         _root.mainloop()
> 
> if __name__ == '__main__':
>     demo()

-- 
This time for sure!
    -Bullwinkle J. Moose
-----------------------------
Vern Ceder, Director of Technology
Canterbury School, 3210 Smith Road, Ft Wayne, IN 46804
[EMAIL PROTECTED]; 260-436-0746; FAX: 260-436-5137

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"edupython" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/edupython
-~----------~----~----~----~------~----~------~--~---

Reply via email to