Hi Toby,

could you specify which C++ standard you are using?

The possible implementations for a free function that replaces your lambda 
depends on this.
E.g. since C++14 you should be able to just declare the function as

  auto func(...)

Cheers,
David

> On 17. Dec 2019, at 13:15, Wood, Tobias <[email protected]> wrote:
> 
> Hello,
>  
> I am trying to write a finite difference function for Eigen::Tensors. 
> Currently I am using a lambda:
>  
> auto diff = [](Eigen::Tensor<std::complex<float>, 3> const &a, Eigen::Index 
> const d) {
>   Dims3 const sz{a.dimension(0) - 2, a.dimension(1) - 2, a.dimension(2) - 2};
>   Dims3 const st1{1, 1, 1};
>   Dims3 fwd{1, 1, 1};
>   Dims3 bck{1, 1, 1};
>   fwd[d] = 2;
>   bck[d] = 0;
>  
>   return (a.slice(fwd, sz) - a.slice(bck, sz)) / a.slice(st1, 
> sz).constant(2.f);
> };
>  
> This works okay. However, I would like to do two things:
>  
> 1 – Change this from a lambda into a free function. What should the return 
> type of the function be, so that it returns the expression/operation and does 
> not evaluate the tensor into a temporary?
> 2 – I would prefer to pass in a TensorRef, so I can pass in a .chip() from a 
> 4D tensor without a temporary. When I try to do this with the current lambda, 
> and I am assigning to a slice, e.g.
>  
> b.chip<3>(0).slice(st1, sz) = diff(a, 0);
>  
> I get the following error:
>  
> TensorRef.h:413:51: error: cannot initialize return object of type 
> 'Eigen::TensorEvaluator<const 
> Eigen::TensorRef<Eigen::Tensor<std::__1::complex<float>, 3, 0, long> >, 
> Eigen::ThreadPoolDevice>::Scalar *' (aka 'std::__1::complex<float> *') with 
> an rvalue of type 'const 
> Eigen::TensorRef<Eigen::Tensor<std::__1::complex<float>, 3, 0, long> 
> >::Scalar *' (aka 'const std::__1::complex<float> *')
>  
> This appears to be complaining that I can’t assign a `const 
> std::complex<float> *` to a `std::complex<float> *`?
>  
> Thanks in advance,
> Toby

Reply via email to