it can be tested with model file generated from above python script: import tensorflow as tf import numpy as np import imageio
in_img = imageio.imread('input.jpg') in_img = in_img.astype(np.float32)/255.0 in_data = in_img[np.newaxis, :] x = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='dnn_in') z1 = 0.5 + 0.3 * x z2 = z1 * 4 z3 = z2 - x - 2.0 y = tf.identity(z3, name='dnn_out') sess=tf.Session() sess.run(tf.global_variables_initializer()) graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, ['dnn_out']) tf.train.write_graph(graph_def, '.', 'image_process.pb', as_text=False) print("image_process.pb generated, please use \ path_to_ffmpeg/tools/python/convert.py to generate image_process.model\n") output = sess.run(y, feed_dict={x: in_data}) imageio.imsave("out.jpg", np.squeeze(output)) Signed-off-by: Guo, Yejun <yejun....@intel.com> --- libavfilter/dnn/dnn_backend_native_layer_mathbinary.c | 13 +++++++++++++ libavfilter/dnn/dnn_backend_native_layer_mathbinary.h | 1 + tools/python/convert_from_tensorflow.py | 4 +++- tools/python/convert_header.py | 2 +- 4 files changed, 18 insertions(+), 2 deletions(-) diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c index 3fe337f..222941e 100644 --- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c +++ b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c @@ -120,6 +120,19 @@ int dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_ope } } return 0; + case DMBO_MUL: + if (params->input0_broadcast || params->input1_broadcast) { + for (int i = 0; i < dims_count; ++i) { + dst[i] = params->v * src[i]; + } + } else { + const DnnOperand *input1 = &operands[input_operand_indexes[1]]; + const float *src1 = input1->data; + for (int i = 0; i < dims_count; ++i) { + dst[i] = src[i] * src1[i]; + } + } + return 0; default: return -1; } diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h index 3c5bc6b..d58b48c 100644 --- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h +++ b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h @@ -33,6 +33,7 @@ typedef enum { DMBO_SUB = 0, DMBO_ADD = 1, + DMBO_MUL = 2, DMBO_COUNT } DNNMathBinaryOperation; diff --git a/tools/python/convert_from_tensorflow.py b/tools/python/convert_from_tensorflow.py index 9a495c0..dc3b4e3 100644 --- a/tools/python/convert_from_tensorflow.py +++ b/tools/python/convert_from_tensorflow.py @@ -71,7 +71,7 @@ class TFConverter: self.conv2d_scope_names = set() self.conv2d_scopename_inputname_dict = {} self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5} - self.mathbin2code = {'Sub':0, 'Add':1} + self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2} self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} self.name_operand_dict = {} @@ -309,6 +309,8 @@ class TFConverter: self.dump_mathbinary_to_file(node, f) elif node.op == 'Add': self.dump_mathbinary_to_file(node, f) + elif node.op == 'Mul': + self.dump_mathbinary_to_file(node, f) def dump_operands_to_file(self, f): diff --git a/tools/python/convert_header.py b/tools/python/convert_header.py index 7027022..87899fe 100644 --- a/tools/python/convert_header.py +++ b/tools/python/convert_header.py @@ -23,4 +23,4 @@ str = 'FFMPEGDNNNATIVE' major = 1 # increase minor when we don't have to re-convert the model file -minor = 2 +minor = 3 -- 2.7.4 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".