This improves accuracy for the bessel function, and this in turn should improve the quality of the Kaiser window. The algorithm is taken from the Boost project, who have done a detailed investigation of the accuracy of their method, as compared with e.g the GNU Scientific Library (GSL): http://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/mbessel.html. Boost source code (also cited in the code): https://searchcode.com/codesearch/view/14918379/.
For easy reference, here are some sample accuracy values obtained as follows. i0 denotes the old bessel code, i0_boost the approach here, and i0_real an arbitrary precision result (truncated) from e.g Wolfram Alpha: type e.g "bessel i0(6.0)" to reproduce. These are evaluation points that occur for the default kaiser_beta = 9. bessel(8.0) i0 (8.000000) = 427.564115721804739678191254 i0_boost(8.000000) = 427.564115721804796521610115 i0_real (8.000000) = 427.564115721804785177396791 bessel(6.0) i0 (6.000000) = 67.234406976477956163762428 i0_boost(6.000000) = 67.234406976477970374617144 i0_real (6.000000) = 67.234406976477975326188025 Main accuracy benefits come at larger bessel arguments, where the Taylor-Maclaurin method is not that good: 23+ iterations (at large arguments, since the series is about 0) can cause significant floating point error accumulation. Benchmarks are sort of besides the point, since this is in an init function, and if one wants a fast window, Kaiser is likely not the best idea. For that matter, if clients want fast reinit's, it may make more sense to cache the results than evaluate again. Also, I was unable to get multiple runs to do a proper bench in FATE easily using simple methods such as stream_loop, since the init is only called while changing the sample rate parameters ------------------------------------------------------------------------------- Note that there is another usage of bessel in libavcodec, so it may or may not be useful to place this in libavutil someplace. I wonder if there is a way to check easily in FATE the accuracy benefits as translated to the actual resampling, as that is the main selling point of this patch. Signed-off-by: Ganesh Ajjanagadde <gajjanaga...@gmail.com> --- libswresample/resample.c | 99 +++++++++++++++++++++++++++++++++++------------- 1 file changed, 72 insertions(+), 27 deletions(-) diff --git a/libswresample/resample.c b/libswresample/resample.c index 036eff3..695b23a 100644 --- a/libswresample/resample.c +++ b/libswresample/resample.c @@ -28,38 +28,83 @@ #include "libavutil/avassert.h" #include "resample.h" +static inline double eval_poly(const double *coeff, int size, double x) { + double sum = coeff[size-1]; + int i; + for (i = size-2; i >= 0; --i) { + sum *= x; + sum += coeff[i]; + } + return sum; +} + /** * 0th order modified bessel function of the first kind. + * Algorithm taken from the Boost project, source: + * https://searchcode.com/codesearch/view/14918379/ */ -static double bessel(double x){ - double lastv=0; - double t, v; - int i; - static const double inv[100]={ - 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10), - 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20), - 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30), - 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40), - 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50), - 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60), - 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70), - 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80), - 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90), - 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000) +static double bessel(double x) { +// Modified Bessel function of the first kind of order zero +// minimax rational approximations on intervals, see +// Blair and Edwards, Chalk River Report AECL-4928, 1974 + static const double p1[] = { + -2.2335582639474375249e+15, + -5.5050369673018427753e+14, + -3.2940087627407749166e+13, + -8.4925101247114157499e+11, + -1.1912746104985237192e+10, + -1.0313066708737980747e+08, + -5.9545626019847898221e+05, + -2.4125195876041896775e+03, + -7.0935347449210549190e+00, + -1.5453977791786851041e-02, + -2.5172644670688975051e-05, + -3.0517226450451067446e-08, + -2.6843448573468483278e-11, + -1.5982226675653184646e-14, + -5.2487866627945699800e-18, }; - - x= x*x/4; - t = x; - v = 1 + x; - for(i=1; v != lastv; i+=2){ - t *= x*inv[i]; - v += t; - lastv=v; - t *= x*inv[i + 1]; - v += t; - av_assert2(i<98); + static const double q1[] = { + -2.2335582639474375245e+15, + 7.8858692566751002988e+12, + -1.2207067397808979846e+10, + 1.0377081058062166144e+07, + -4.8527560179962773045e+03, + 1.0L, + }; + static const double p2[] = { + -2.2210262233306573296e-04, + 1.3067392038106924055e-02, + -4.4700805721174453923e-01, + 5.5674518371240761397e+00, + -2.3517945679239481621e+01, + 3.1611322818701131207e+01, + -9.6090021968656180000e+00, + }; + static const double q2[] = { + -5.5194330231005480228e-04, + 3.2547697594819615062e-02, + -1.1151759188741312645e+00, + 1.3982595353892851542e+01, + -6.0228002066743340583e+01, + 8.5539563258012929600e+01, + -3.1446690275135491500e+01, + 1.0L, + }; + double y, r, factor; + if (x == 0) + return 1.0; + x = fabs(x); + if (x <= 15) { + y = x * x; + return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, FF_ARRAY_ELEMS(q1), y); + } + else { + y = 1 / x - 1.0 / 15; + r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, FF_ARRAY_ELEMS(q2), y); + factor = exp(x) / sqrt(x); + return factor * r; } - return v; } /** -- 2.6.2 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org http://ffmpeg.org/mailman/listinfo/ffmpeg-devel