This improves accuracy for the bessel function, and this in turn should
improve the quality of the Kaiser window.
The algorithm is taken from the Boost project, who have done a detailed
investigation of the accuracy of their method, as compared with e.g the
GNU Scientific Library (GSL):
http://www.boost.org/doc/libs/1_52_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/mbessel.html.
Boost source code (also cited in the code):
https://searchcode.com/codesearch/view/14918379/.

For easy reference, here are some sample accuracy values obtained as
follows. i0 denotes the old bessel code, i0_boost the approach here, and
i0_real an arbitrary precision result (truncated) from e.g Wolfram Alpha:
type e.g "bessel i0(6.0)" to reproduce. These are evaluation points that
occur for the default kaiser_beta = 9.

bessel(8.0)
i0      (8.000000) = 427.564115721804739678191254
i0_boost(8.000000) = 427.564115721804796521610115
i0_real (8.000000) = 427.564115721804785177396791

bessel(6.0)
i0      (6.000000) = 67.234406976477956163762428
i0_boost(6.000000) = 67.234406976477970374617144
i0_real (6.000000) = 67.234406976477975326188025

Main accuracy benefits come at larger bessel arguments, where the
Taylor-Maclaurin method is not that good: 23+ iterations
(at large arguments, since the series is about 0) can cause
significant floating point error accumulation.

Benchmarks are sort of besides the point, since this is in an init
function, and if one wants a fast window, Kaiser is likely not the best
idea. For that matter, if clients want fast reinit's, it may make more
sense to cache the results than evaluate again.

Also, I was unable to get multiple runs to do a proper
bench in FATE easily using simple methods such as stream_loop, since the init
is only called while changing the sample rate parameters
-------------------------------------------------------------------------------
Note that there is another usage of bessel in libavcodec, so it may or
may not be useful to place this in libavutil someplace.
I wonder if there is a way to check easily in FATE the accuracy
benefits as translated to the actual resampling, as that is the main selling
point of this patch.

Signed-off-by: Ganesh Ajjanagadde <gajjanaga...@gmail.com>
---
 libswresample/resample.c | 99 +++++++++++++++++++++++++++++++++++-------------
 1 file changed, 72 insertions(+), 27 deletions(-)

diff --git a/libswresample/resample.c b/libswresample/resample.c
index 036eff3..695b23a 100644
--- a/libswresample/resample.c
+++ b/libswresample/resample.c
@@ -28,38 +28,83 @@
 #include "libavutil/avassert.h"
 #include "resample.h"
 
+static inline double eval_poly(const double *coeff, int size, double x) {
+    double sum = coeff[size-1];
+    int i;
+    for (i = size-2; i >= 0; --i) {
+        sum *= x;
+        sum += coeff[i];
+    }
+    return sum;
+}
+
 /**
  * 0th order modified bessel function of the first kind.
+ * Algorithm taken from the Boost project, source:
+ * https://searchcode.com/codesearch/view/14918379/
  */
-static double bessel(double x){
-    double lastv=0;
-    double t, v;
-    int i;
-    static const double inv[100]={
- 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 
1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
- 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 
1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
- 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 
1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
- 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 
1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
- 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 
1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
- 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 
1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
- 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 
1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
- 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 
1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
- 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 
1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
- 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 
1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
+static double bessel(double x) {
+// Modified Bessel function of the first kind of order zero
+// minimax rational approximations on intervals, see
+// Blair and Edwards, Chalk River Report AECL-4928, 1974
+    static const double p1[] = {
+        -2.2335582639474375249e+15,
+        -5.5050369673018427753e+14,
+        -3.2940087627407749166e+13,
+        -8.4925101247114157499e+11,
+        -1.1912746104985237192e+10,
+        -1.0313066708737980747e+08,
+        -5.9545626019847898221e+05,
+        -2.4125195876041896775e+03,
+        -7.0935347449210549190e+00,
+        -1.5453977791786851041e-02,
+        -2.5172644670688975051e-05,
+        -3.0517226450451067446e-08,
+        -2.6843448573468483278e-11,
+        -1.5982226675653184646e-14,
+        -5.2487866627945699800e-18,
     };
-
-    x= x*x/4;
-    t = x;
-    v = 1 + x;
-    for(i=1; v != lastv; i+=2){
-        t *= x*inv[i];
-        v += t;
-        lastv=v;
-        t *= x*inv[i + 1];
-        v += t;
-        av_assert2(i<98);
+    static const double q1[] = {
+        -2.2335582639474375245e+15,
+         7.8858692566751002988e+12,
+        -1.2207067397808979846e+10,
+         1.0377081058062166144e+07,
+        -4.8527560179962773045e+03,
+         1.0L,
+    };
+    static const double p2[] = {
+        -2.2210262233306573296e-04,
+         1.3067392038106924055e-02,
+        -4.4700805721174453923e-01,
+         5.5674518371240761397e+00,
+        -2.3517945679239481621e+01,
+         3.1611322818701131207e+01,
+        -9.6090021968656180000e+00,
+    };
+    static const double q2[] = {
+        -5.5194330231005480228e-04,
+         3.2547697594819615062e-02,
+        -1.1151759188741312645e+00,
+         1.3982595353892851542e+01,
+        -6.0228002066743340583e+01,
+         8.5539563258012929600e+01,
+        -3.1446690275135491500e+01,
+        1.0L,
+    };
+    double y, r, factor;
+    if (x == 0)
+        return 1.0;
+    x = fabs(x);
+    if (x <= 15) {
+        y = x * x;
+        return eval_poly(p1, FF_ARRAY_ELEMS(p1), y) / eval_poly(q1, 
FF_ARRAY_ELEMS(q1), y);
+    }
+    else {
+        y = 1 / x - 1.0 / 15;
+        r = eval_poly(p2, FF_ARRAY_ELEMS(p2), y) / eval_poly(q2, 
FF_ARRAY_ELEMS(q2), y);
+        factor = exp(x) / sqrt(x);
+        return factor * r;
     }
-    return v;
 }
 
 /**
-- 
2.6.2

_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
http://ffmpeg.org/mailman/listinfo/ffmpeg-devel

Reply via email to