Dear Bilal,

If you're interested in groups of order p^4, take a look at this:

https://arxiv.org/pdf/1611.00461.pdf

Without checking this paper thoroughly, it looks to me that your groups are the 6th and 7th from Table 2, marked by (**). (The third group marked by (**) has a C5xC5xC5 normal subgroup in it, containing all elements of order 5, so that cannot be any of your groups.)

Lemma 19 explains why your two groups are in fact nonisomorphic.

Thanks,
Gábor

On Sun, 3 Nov 2019, Bilal Hasanat wrote:

Dear all, hope that my email finds all of you very well.
I am a new GAP user. While I am using GAP to find all groups of order 5^4, the 
obtained list contains 15 groups, say G[i], i=1,2,...,15. I found that G[9] and 
G[10] have the same StructureDescription  (C25 x C5) : C5, although they are 
not isomorphic groups! . On the other hand, I have try to test why these two 
groups are not isomorphic using GAP's calculations, and I still find a complete 
match of what I test for both groups.
Kindly, is there any way to configure the differences between these two groups 
using GAP?
Bilal N. Al-Hasanat Department of MathematicsAl Hussein Bin Talal University On Thursday, October 24, 2019, 02:00:17 PM GMT+3, [email protected] <[email protected]> wrote:
Send Forum mailing list submissions to
    [email protected]

To subscribe or unsubscribe via the World Wide Web, visit
    https://mail.gap-system.org/mailman/listinfo/forum
or, via email, send a message with subject or body 'help' to
    [email protected]

You can reach the person managing the list at
    [email protected]

When replying, please edit your Subject line so it is more specific
than "Re: Contents of Forum digest..."


Today's Topics:

  1. matrix realization over prime field (Evgeny Vdovin)
  2. Re: matrix realization over prime field (Frank L?beck)


----------------------------------------------------------------------

Message: 1
Date: Thu, 24 Oct 2019 08:20:31 +0700
From: Evgeny Vdovin <[email protected]>
To: [email protected]
Subject: [GAP Forum] matrix realization over prime field
Message-ID:
    <caaq9cl8xlwp3d8wqf8ssvdkvfgbay6cxeuymfrgcnus5yqt...@mail.gmail.com>
Content-Type: text/plain; charset="UTF-8"

Dear all,

Could you give me an idea, how could I realize the following procedure:

Let A be a n*n matrix over a non-prime field GF(p^k) (say, A in GL(2,4)). I
need to generate matrix B of size nk*nk over GF(p) such that each k*k block
in it is an element in GF(p^k) realized as k*k matrices over GF(p) and the
element corresponds to an element of A.

For example, if
A =
[
  [Z(2^2),0*Z(2^2)],
  [0*Z(2^2),Z(2^2)^(-0)]
]
and
Z(2^2) =
[
  [a,b],
  [c,d]
];
Z(2^2)^(-1)=
[
  [x,y],
  [z,t]
],
then
B=
[
  [a,b,0*Z(2),0*Z(2)],
  [c,d,0*Z(2),0*Z(2)],
  [0*Z(2),0*Z(2),x,y],
  [0*Z(2),0*Z(2),z,t]
].

All the best, Evgeny.

--
Evgeny Vdovin
Sobolev Institute of Mathematics
pr-t Acad. Koptyug, 4
630090, Novosibirsk, Russia
Office    +7 383 3297663
Fax      +7 383 3332598


------------------------------

Message: 2
Date: Thu, 24 Oct 2019 03:55:50 +0200
From: Frank L?beck <[email protected]>
To: Evgeny Vdovin <[email protected]>, [email protected]
Subject: Re: [GAP Forum] matrix realization over prime field
Message-ID: <[email protected]>
Content-Type: text/plain; charset=iso-8859-1

Dear Evgeny, dear Forum,

I have written such a function for a demo. It is maybe not very elegant or
optimized but seems to work:

# write elements of GF(q^d) as dxd-matrices over GF(q)
MatricesFieldElts := function(q, d)
  local f, bas, basv, z, zmat, res, i;
  f := GF(GF(q), d);
  bas := Basis(f);
  basv := BasisVectors(bas);
  z := Z(q^d);
  zmat := List(basv*z, x-> Coefficients(bas, x));
  for i in zmat do
    ConvertToVectorRep(i, q);
  od;
  MakeImmutable(zmat);
  ConvertToMatrixRep(zmat, q);
  res := [zmat^0];
  for i in [1..q^d-2] do
    res[i+1] := res[i] * zmat;
  od;
  res[q^d] := NullMat(d, d, GF(q));
  return res;
end;

# blow up GF(q^d)-matrix over subfield of size q and degree d
BlowUpMatrixOverSmallField := function(mat, q, d)
  local flist, z, f, tmp;   flist := MatricesFieldElts(q, d);
  z := Z(q^d);
  f := function(c)
    if IsZero(c) then
      return flist[q^d];
    fi;
    return flist[LogFFE(c, z)+1];
  end;
  tmp := List(mat, r-> List(r, f));
  tmp := Concatenation(List(tmp, r-> List([1..d], i-> Concatenation(
              List(r, m-> m[i])))));   ConvertToMatrixRep(tmp, q);
  return tmp;
end;

gap> A := [ [ Z(2^2), 0*Z(2) ], [ 0*Z(2), Z(2)^0 ] ];;
gap> AA := BlowUpMatrixOverSmallField(A, 2, 2);
<a 4x4 matrix over GF2>
gap> Display(AA);
. 1 . .
1 1 . .
. . 1 .
. . . 1


Best regards,
  Frank


On Thu, Oct 24, 2019 at 08:20:31AM +0700, Evgeny Vdovin wrote:
Dear all,

Could you give me an idea, how could I realize the following procedure:

Let A be a n*n matrix over a non-prime field GF(p^k) (say, A in GL(2,4)). I
need to generate matrix B of size nk*nk over GF(p) such that each k*k block
in it is an element in GF(p^k) realized as k*k matrices over GF(p) and the
element corresponds to an element of A.

For example, if
A =
[
    [Z(2^2),0*Z(2^2)],
    [0*Z(2^2),Z(2^2)^(-0)]
]
and
Z(2^2) =
[
  [a,b],
  [c,d]
];
Z(2^2)^(-1)=
[
  [x,y],
  [z,t]
],
then
B=
[
  [a,b,0*Z(2),0*Z(2)],
  [c,d,0*Z(2),0*Z(2)],
  [0*Z(2),0*Z(2),x,y],
  [0*Z(2),0*Z(2),z,t]
].

All the best, Evgeny.

--
Evgeny Vdovin
Sobolev Institute of Mathematics
pr-t Acad. Koptyug, 4
630090, Novosibirsk, Russia
Office    +7 383 3297663
Fax      +7 383 3332598
_______________________________________________
Forum mailing list
[email protected]
https://mail.gap-system.org/mailman/listinfo/forum

--
///  Dr. Frank L?beck, Lehrstuhl D f?r Mathematik, Pontdriesch 14/16,
\\\                    52062 Aachen, Germany
///  E-mail: [email protected]
\\\  WWW:    http://www.math.rwth-aachen.de/~Frank.Luebeck/



------------------------------

_______________________________________________
Forum mailing list
[email protected]
https://mail.gap-system.org/mailman/listinfo/forum


End of Forum Digest, Vol 191, Issue 8
*************************************

_______________________________________________
Forum mailing list
[email protected]
https://mail.gap-system.org/mailman/listinfo/forum


                                                Horvath Gabor
-------------------------------------------------------------------------------
e-mail: [email protected]
phone: +36 52 512900 / 22798
web: http://www.math.unideb.hu/horvath-gabor
_______________________________________________
Forum mailing list
[email protected]
https://mail.gap-system.org/mailman/listinfo/forum

Reply via email to