Dear Forum,
Marek Mitros asked: > > But when I use function TransitiveGroup(n,s) then I see following > > tn:=NrTransitiveGroups(n); > g:=List([1..tn], s->TransitiveGroup(n,s)); > Print("In dimesion", n, " there are ",tn," transitive groups. \n"); > Print(g, "\n"); > sg:=List(g, x->Size(x)); > Print("Sizes are: ",sg, "\n"); > > In dimesion6 there are 16 transitive groups. > [ C(6) = 6 = 3[x]2, D_6(6) = [3]2, D(6) = S(3)[x]2, A_4(6) = [2^2]3, > F_18(6) = [3^2]2 = 3 wr 2, 2A_4(6) = [2^3]3 = 2 wr 3, S_4(6d) = [2^2]S(3), > S_4(6c) = 1/2[2^3]S(3), F_18(6):2 = [1/2.S(3)^2]2, F_36(6) = 1/2[S(3)^2]2, > 2S_4(6) = [2^3]S(3) = 2 wr S(3), L(6) = PSL(2,5) = A_5(6), > F_36(6):2 = [S(3)^2]2 = S(3) wr 2, L(6):2 = PGL(2,5) = S_5(6), A6, S6 ] > Sizes are: [ 6, 6, 12, 12, 18, 24, 24, 24, 36, 36, 48, 60, 72, 120, 360, 720 ] > > Where I can find explanation of the notation A_4(6), F_18(6), in other > dimension there are also F(5), E(9), etc. ? The names are defined in: MR1635715 (99g:20011) Conway, John H.(1-PRIN); Hulpke, Alexander(4-STAN-SM); McKay, John(3-CONC-AL) On transitive permutation groups. LMS J. Comput. Math. 1 (1998), 1--8 The extra information in parentheses provides information about the permutation structure. Best, Alexander Hulpke -- Colorado State University, Department of Mathematics, Weber Building, 1874 Campus Delivery, Fort Collins, CO 80523-1874, USA email: hul...@math.colostate.edu, Phone: ++1-970-4914288 http://www.math.colostate.edu/~hulpke _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum