Dear Jianjun,

you may try this code (no warranty):

prod:=function(x,y) return x*y; end;

IsPermutable:=function(G,H)
local g;
    if IsNormal(G,H) then return true; fi;
if ForAll(Set(G),g->SetX(H,Group(g),prod)=SetX(Group(g),H,prod)) then return true; else return false; fi;
end;

AllSgPermutable:=function(G)
    if not IsNilpotentGroup(G) then return false; fi;
if ForAll(List(ConjugacyClassesSubgroups(G),Representative),H->IsPermutable(G,H)) then return true; else return false; fi;
end;

Here observe that it is only necessary to test permutability with cyclic subgroups. Moreover, if all subgroups are permutable in a finite group G, then G must be nilpotent, since two different Sylow p-subgroups (for the same prime p) are certainly not permutable.

Best wishes,
Benjamin Sambale

Am 13.07.2011 16:28, schrieb 刘建军:
Dear forum,

A subgroup H of a finite group G is said to be permutable if HK=KH for every 
subgroup K of G.

I would like to know whether all subgroups of a group G are permutable.
Is there a method to get it in GAP?

Best Wishes
Jianjun Liu
_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum


 * Englisch - erkannt
 * Englisch
 * Deutsch

 * Englisch
 * Deutsch

<javascript:void(0);>

_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum

Reply via email to