Dear Ahmet, Perhaps this is what you need then?
gap> DirectProduct(CyclicGroup(25),CyclicGroup(5)); <pc group of size 125 with 3 generators> gap> G:=DirectProduct(CyclicGroup(25),CyclicGroup(5)); <pc group of size 125 with 3 generators> gap> StructureDescription(G); "C25 x C5" gap> Projection(G,1); Pcgs([ f1, f2, f3 ]) -> [ f1, f2, <identity> of ... ] gap> StructureDescription(Image(Projection(G,1))); "C25" gap> StructureDescription(Image(Projection(G,2))); "C5" HTH Alexander On 14 Nov 2014, at 11:59, Ahmet Arıkan <ari...@gazi.edu.tr> wrote: > Dear Forum, > Can we calculate the external direct product \mathbb{Z}_{25}\oplus > \mathbb{Z}_5 in GAP not considering isomorphic copies of them in symmetric > groups. > > We follow Rainbolt&Gallian notes with a group of students in this semester > and we will ask some questions along the way. > > Thank you > Ahmet Arıkan > > > iPad'imden gönderildi > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum