In the graph you define, two elements are adjacent if they lie in the same
orbit of the automorphism group. So one way to construct it is
aut := AutomorphismGroup ( G );
adj := function (x,y)
return x in Orbit (aut, y);
end;
Graph (aut, Elements (G), OnPoints, adj);
Regards,
Sven Reichard.
Gesendet mit AquaMail für Android
http://www.aqua-mail.com
Am 8. August 2015 11:09:25 schrieb hojjat Rostami <rostamihoj...@yahoo.com>:
Dear forum,
Can someone help with the construction a graph for a group G, where its
vertices set is G and two element x,y of G are connected if there exists
some automorphism a such that a(x)=y or a(y)=x.Best regard
_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum
_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum