Hi Graham, Thank you very much for this full example! That's exactly what I needed.
I made some progress toward successfully running it: First I found about two things: - I needed to LoadPackage("hap"); - A:=GOuterGroup();; failed, but A:=GOuterGroup(V);; succeeded, so I am using that. I now run into this problem: gap> G:=SymmetricGroup(5);; gap> V:=AbelianGroup(IsPcGroup,[2,2,2,2,2]);; gap> A:=GOuterGroup(V);; gap> SetActedGroup(A,V);; gap> SetActingGroup(A,G);; gap> gensV:=GeneratorsOfGroup(V);; gap> w:=GroupHomomorphismByImages(V,V,gensV,gensV{[2,1,3,4,5]});; gap> x:=GroupHomomorphismByImages(V,V,gensV,gensV{[1,3,2,4,5]});; gap> y:=GroupHomomorphismByImages(V,V,gensV,gensV{[1,2,4,3,5]});; gap> z:=GroupHomomorphismByImages(V,V,gensV,gensV{[1,2,3,5,4]});; gap> G1:=Group([w,x,y,z]);; gap> iso:=GroupHomomorphismByImages(G,G1,[(1,2),(2,3),(3,4),(4,5)],[w,x,y,z]);; gap> action:=function(g,v); return v^Image(iso,g^-1); end;; #HAP uses left actions!!! gap> SetOuterAction(A,action);; gap> R:=ResolutionFiniteGroup(G,7);; gap> C:=HomToGModule(R,A);; gap> H6:=Cohomology(C,6); Error, no method found! For debugging hints type ?Recovery from NoMethodFound Error, no 1st choice method found for `*' on 2 arguments called from g * a at /usr/local/google/home/benoitjacob/gap/pkg/Hap1.10/lib/GOuterGroups/ goutergroup.gi:178 called from act( R!.elts[AbsInt( x )], a ) at /usr/local/google/home/benoitjacob/gap/pkg/Hap1.10/lib/GOuterGroups/ homtogouter.gi:36 called from fn( j, Image( Projection( UM, j ), x ) ) at /usr/local/google/home/benoitjacob/gap/pkg/Hap1.10/lib/GOuterGroups/ homtogouter.gi:44 called from func( C[i] ) at /usr/local/google/home/benoitjacob/gap/lib/coll.gi:745 called from List( [ 1 .. R!.dimension( n ) ], function ( j ) return fn( j, Image( Projection( UM, j ), x ) ); end ) at /usr/local/google/home/benoitjacob/gap/pkg/Hap1.10/lib/GOuterGroups/ homtogouter.gi:44 called from ... at line 22 of *stdin* you can 'quit;' to quit to outer loop, or you can 'return;' to continue brk> ShowDetails(); -------------------------------------------- Information about a `No method found'-error: -------------------------------------------- Operation : * Number of Arguments : 2 Operation traced : false IsConstructor : false Choice : 1st brk> ShowArguments(); [ (4,5), f1 ] Cheers, Benoit On Wed, Nov 11, 2015 at 5:09 PM, Ellis, Grahamj <graham.el...@nuigalway.ie> wrote: > Hi Benoit, > > On Wed, Nov 11, 2015 at 10:52:29AM -0500, Benoit Jacob wrote: > > > I need to compute cohomology groups of the form > > > > > > H^n(G, A) > > > > > > where G is a finite group and A is a nontrivial G-module. More > > > specifically, A is a finite-dimensional vector space over Z/2Z on > which G > > > acts non-trivially. > > > > > > Any example code would be greatly appreciated; > > I think the answer to you question depends very much on the type of input > (how large is your n? what nice properties does G have? what is the > dimension of the module A?) and on the required output (do you only want > the abelian invariants of the cohomology group, or do you also need things > like explicit cocycles?). For n=1,2 you might have most success using the > Coho package. If you send me details I'd be glad to try to help. > > The following example code calculates the abelian invariants of > > H^6(G,A)=Z_2 x Z_2 x Z_2 x Z_2 x Z_5 > > for G=S_5 the symmetric group of degree 5 and A the vector space of > dimension 5 over GF(2) with permutation action. But with a tiny bit of > programming (involving Sylow subgroups) this example can be significantly > improved. > > gap> G:=SymmetricGroup(5);; > gap> > gap> V:=AbelianGroup(IsPcGroup,[2,2,2,2,2]);; > gap> gensV:=GeneratorsOfGroup(V);; > gap> w:=GroupHomomorphismByImages(V,V,gensV,gensV{[2,1,3,4,5]});; > gap> x:=GroupHomomorphismByImages(V,V,gensV,gensV{[1,3,2,4,5]});; > gap> y:=GroupHomomorphismByImages(V,V,gensV,gensV{[1,2,4,3,5]});; > gap> z:=GroupHomomorphismByImages(V,V,gensV,gensV{[1,2,3,5,4]});; > gap> G1:=Group([w,x,y,z]);; > gap> > gap> > iso:=GroupHomomorphismByImages(G,G1,[(1,2),(2,3),(3,4),(4,5)],[w,x,y,z]);; > gap> action:=function(g,v); return v^Image(iso,g^-1); end;; #HAP uses > left actions!!! > gap> > gap> A:=GOuterGroup();; > gap> SetActedGroup(A,V);; > gap> SetActingGroup(A,G);; > gap> SetOuterAction(A,action);; > gap> > gap> R:=ResolutionFiniteGroup(G,7);; > gap> C:=HomToGModule(R,A);; > gap> > gap> H6:=Cohomology(C,6); > [ 2, 2, 2, 2, 2 ] > > > All the best, > > Graham > > School of Mathematics, Statistics & Applied Mathematics > National University of Ireland, Galway > University Road, > Galway > Ireland > > http://hamilton.nuigalway.ie > tel: 091 493011 > _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum