For at least some groups, the obvious commands work:
for instance
gap> g := SmallGroup(1536,10^6);
<pc group of size 1536 with 10 generators>
gap> Intersection(MaximalNormalSubgroups(g));
Group([ f6, f7, f8, f9 ])
gap> s := TransitiveGroup(24,1000);
t24n1000
gap> Intersection(MaximalNormalSubgroups(s));
<permutation group of size 96 with 6 generators>
I’m not sure what the limitations of the available methods fro
MaximalNormalSubgroups are,
nor whether a method targeted directly at the Radical could be significantly
more efficient.
Steve
> On 21 Nov 2015, at 21:20, Will Chen <[email protected]> wrote:
>
> Here by Jacobson radical I mean the intersection of all maximal normal
> subgroups.
>
> Thanks,
>
> - Will
>
> --
>
> William Yun Chen
> Ph.D. Student & Graduate Teaching Associate
> Department of Mathematics
> Pennsylvania State University, University Park, PA, 16801
> [email protected]
> [email protected]
> _______________________________________________
> Forum mailing list
> [email protected]
> http://mail.gap-system.org/mailman/listinfo/forum
_______________________________________________
Forum mailing list
[email protected]
http://mail.gap-system.org/mailman/listinfo/forum