Dear Alper, > On 04 Oct 2016, at 11:31, Alper Odabaş <aoda...@ogu.edu.tr> wrote: > > Dear forum, > > > > By linear algebra, the choice of an (ordered) basis for a free module of > finite rank m yields an isomorphism to Z^{1 x m}, the module whose entries > are row matrices with m columns. > > > > In GAP, how to get matrices from the group algebra > GroupRing(GF(2),CyclicGroup(3))
Your question is a bit ambiguous, I'll interpret it as follows: Given a basis B of an algebra A, how can I express an element x as a matrix over that basis? Answer: Using the command AdjointMatrix. Here is an example: gap> R:=GroupRing(GF(2),CyclicGroup(3)); <algebra-with-one over GF(2), with 1 generators> gap> x:= R.1 + R.1^2; gap> B:=Basis(R); CanonicalBasis( <algebra-with-one over GF(2), with 1 generators> ) gap> AsList(B); # let's see which basis GAP picked...: [ (Z(2)^0)*<identity> of ..., (Z(2)^0)*f1, (Z(2)^0)*f1^2 ] gap> mat:=AdjointMatrix(Basis(R), x); [ [ 0*Z(2), Z(2)^0, Z(2)^0 ], [ Z(2)^0, 0*Z(2), Z(2)^0 ], [ Z(2)^0, Z(2)^0, 0*Z(2) ] ] gap> Display(mat); . 1 1 1 . 1 1 1 . Hope that helps, Max _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum