If you run the Group Extension program for getting cyclic group extension as follows
gap> g:=SmallGroup(11^4,11); <pc group of size 14641 with 4 generators> gap> CyclicSplitExtensions(g,5); rec( both := [ 8192199993 ], down := [ ], up := [ rec( code := 298568409859696239999, order := 73205 ), rec( code := 5856355022849648239999, order := 73205 ), rec( code := 5891490574296688239999, order := 73205 ), rec( code := 11282584185874032239999, order := 73205 ), rec( code := 94119189388603040990846639999, order := 73205 ), rec( code := 94538261508559871198846639999, order := 73205 ), rec( code := 94106975037650140219006639999, order := 73205 ), rec( code := 94464989257903016937086639999, order := 73205 ), rec( code := 94128831738093798622846639999, order := 73205 ), rec( code := 94535689507097728059006639999, order := 73205 ), rec( code := 94162902789490357798526639999, order := 73205 ), rec( code := 94479775706899598272126639999, order := 73205 ), rec( code := 94282447553251495872126639999, order := 73205 ), rec( code := 94138474087584556254846639999, order := 73205 ), rec( code := 94760017161234627233406639999, order := 73205 ), rec( code := 94945130963929828861566639999, order := 73205 ), rec( code := 94842931761382239127166639999, order := 73205 ), rec( code := 94925846361529851020926639999, order := 73205 ), rec( code := 94794076622846695605886639999, order := 73205 ) ] ) how does one get or construct the explicit groups that are found here. In this case it might be relatively easy given the 11 - group here but in other cases it may not be as easy to construct these groups. Commnets ??? Walter Becker _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum