> Current (trunk with small improvenents): 
>
> m11 w 182.19 using 14830 cosets 
>
> HLT style: 
>
> m11 w 0.12 sec using 47966 cosets 
>
 
Amazing ;)
The stakes are high now.

I've tried the Men(n) function  (Mennicke) from the Intro:

)co permgrps
)co gpresent
)set mess time on

-- Mennicke Men(n) from
-- Implementation and Analysis of the Todd-Coxeter Algorithm
-- By John J. Cannon, Lucien A. Dimino, George Havas and Jane M. Watson
-- MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 123, JULY, 1973
-- p. 463

-- HLT version: http://www.math.uni.wroc.pl/~hebisch/fricas/gpresent.spad

LI  ==> List Integer
PI  ==> PositiveInteger
NNI ==> NonNegativeInteger
PGI ==> PermutationGroup Integer

a:LI:=[1 for j in 1..4]
b:LI:=[2 for j in 1..2]
c:LI:=[3 for j in 1..2]
d:LI:=[4 for j in 1..2]
e:LI:=[5 for j in 1..2]

t1:LI:=[1,2,3,4]
t2:LI:=[5,4,-5,-1,4,1]
t3:LI:=[5,-1,2,3,2,1,-5,-2,-1,-3,1,-2]
t4:LI:=[5,3,1,3,-5,-1,-2,-1,-2,1]

tn:Integer->LI
tn(1) == [2,3]
tn(n) == concat([2,3],tn(n-1))


mennicke(m) ==
  gp:=groupPresentation([1,2,3,4,5],[a,b,c,d,e,t1,t2,t3,t4,tn(m)])
  pg:=toPermutationIfCan(gp)
  pg case PGI => order pg
  -1

---

(18) -> mennicke(1)
   Compiling function tn with type Integer -> List(Integer)
   Compiling function tn as a recurrence relation.
   Compiling function mennicke with type PositiveInteger -> Integer
   finished using 174

   (18)  16
                                                        Type: 
PositiveInteger
                           Time: 0.02 (IN) + 0.01 (EV) + 0.08 (OT) = 0.11 
sec
(19) -> mennicke(2)
   finished using 2513

   (19)  256
                                                        Type: 
PositiveInteger
                                                   Time: 0.11 (EV) = 0.11 
sec
(20) -> mennicke(3)
   finished using 28141

   (20)  2688
                                                        Type: 
PositiveInteger
                                                 Time: 12.34 (EV) = 12.34 
sec
(21) -> mennicke(4)
   too large number of iterations (100000), used 449866 rows

   (21)  - 1
                                                                Type: 
Integer
                                                   Time: 3.49 (EV) = 3.49 
sec

It is stated that |Men(5)|=551,040, occupied an IBM 360/50 for 79.5 hours.

The system has a CPU cycle time of 500 nanoseconds
https://en.wikipedia.org/wiki/IBM_System/360_Model_50

A modern CPU @2GHz,  0.5ns => Men(5) in five minutes?
The betting office is open.






 



-- 
You received this message because you are subscribed to the Google Groups 
"FriCAS - computer algebra system" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to fricas-devel+unsubscr...@googlegroups.com.
To post to this group, send email to fricas-devel@googlegroups.com.
Visit this group at https://groups.google.com/group/fricas-devel.
For more options, visit https://groups.google.com/d/optout.

Reply via email to