Revision: 20404
http://sourceforge.net/p/gate/code/20404
Author: gate-project
Date: 2024-07-05 09:41:48 +0000 (Fri, 05 Jul 2024)
Log Message:
-----------
[freddyheppell] Add papers I'm an author on
Modified Paths:
--------------
gate/trunk/doc/papers.html
gate/trunk/doc/papers.yam
Modified: gate/trunk/doc/papers.html
===================================================================
--- gate/trunk/doc/papers.html 2024-02-27 16:39:28 UTC (rev 20403)
+++ gate/trunk/doc/papers.html 2024-07-05 09:41:48 UTC (rev 20404)
@@ -95,10 +95,16 @@
</ul>
<h2 class="cow-heading">2024</h2><h3 class="cow-heading">Journal papers</h3>
-
+
<ul>
<li>Yida Mu, Pu Niu, Kalina Bontcheva, Nikolaos Aletras. (2024) Predicting and
Analyzing the Popularity of False Rumors in Weibo. Expert Systems with
Applications (Elsevier). <a class="cow-url"
href="https://www.sciencedirect.com/science/article/pii/S0957417423032931">https://www.sciencedirect.com/science/article/pii/S0957417423032931</a></li>
</ul>
+
+<ul>
+<li>Olesya Razuvayevskaya, Ben Wu, João A. Leite, Freddy Heppell, Ivan
Srba, Carolina Scarton, Kalina Bontcheva, Xingyi Song. (2024) Comparison
between parameter-efficient techniques and full fine-tuning: A case study on
multilingual news article classification. PLoS ONE. <a class="cow-url"
href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301738">https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301738</a>
</li>
+</ul>
+
+
<h3 class="cow-heading">Conference papers</h3>
<ul>
@@ -123,10 +129,18 @@
<h3 class="cow-heading">Conference papers</h3>
<ul>
+<li>Freddy Heppell, Kalina Bontcheva, Carolina Scarton. Analysing State-Backed
Propaganda Websites: a New Dataset and Linguistic Study (2023). In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing:
EMNLP 2023, pages 5729–5741, Singapore. Association for Computational
Linguistics. <a class="cow-url"
href="https://aclanthology.org/2023.emnlp-main.349/">https://aclanthology.org/2023.emnlp-main.349/</a></li>
+</ul>
+
+<ul>
<li>Matt Canute, Mali Jin, Hannah Holtzclaw, Alberto Lusoli, Philippa Adams,
Mugdha Pandya, Maite Taboada, Diana Maynard, and Wendy Hui Kyong Chun. 2023.
Dimensions of Online Conflict: Towards Modeling Agonism. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 12194–12209,
Singapore. Association for Computational Linguistics. <a class="cow-url"
href="https://aclanthology.org/2023.findings-emnlp.816/">https://aclanthology.org/2023.findings-emnlp.816/</a></li>
</ul>
<ul>
+<li>Ben Wu, Olesya Razuvayevskaya, Freddy Heppell, João A. Leite,
Carolina Scarton, Kalina Bontcheva, Xingyi Song. SheffieldVeraAI at
SemEval-2023 Task 3: Mono and Multilingual Approaches for News Genre, Topic and
Persuasion Technique Classification. In Proceedings of the 17th International
Workshop on Semantic Evaluation (SemEval-2023), pages 1995–2008, Toronto,
Canada. Association for Computational Linguistics. <a class="cow-url"
href="https://aclanthology.org/2023.semeval-1.275/">https://aclanthology.org/2023.semeval-1.275/</a></li>
+</ul>
+
+<ul>
<li>Yida Mu, Kalina Bontcheva, and Nikolaos Aletras. "It's about Time:
Rethinking Evaluation on Rumor Detection Benchmarks using Chronological
Splits." EACL Findings (2023). <a class="cow-url"
href="https://arxiv.org/abs/2302.03147">https://arxiv.org/abs/2302.03147</a></li>
</ul>
Modified: gate/trunk/doc/papers.yam
===================================================================
--- gate/trunk/doc/papers.yam 2024-02-27 16:39:28 UTC (rev 20403)
+++ gate/trunk/doc/papers.yam 2024-07-05 09:41:48 UTC (rev 20404)
@@ -44,9 +44,13 @@
%2* 2024
%3* Journal papers
-
+
- Yida Mu, Pu Niu, Kalina Bontcheva, Nikolaos Aletras. (2024) Predicting and
Analyzing the Popularity of False Rumors in Weibo. Expert Systems with
Applications (Elsevier).
%(https://www.sciencedirect.com/science/article/pii/S0957417423032931)
+- Olesya Razuvayevskaya, Ben Wu, João A. Leite, Freddy Heppell, Ivan Srba,
Carolina Scarton, Kalina Bontcheva, Xingyi Song. (2024) Comparison between
parameter-efficient techniques and full fine-tuning: A case study on
multilingual news article classification. PLoS ONE.
%(https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301738)
+
+
+
%3* Conference papers
- Yida Mu, Chun Dong, Kalina Bontcheva, Xingyi Song. Large Language Models
Offer an Alternative to the Traditional Approach of Topic Modelling LREC-COLING
2024
@@ -63,8 +67,12 @@
%3* Conference papers
+- Freddy Heppell, Kalina Bontcheva, Carolina Scarton. Analysing State-Backed
Propaganda Websites: a New Dataset and Linguistic Study (2023). In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing:
EMNLP 2023, pages 5729–5741, Singapore. Association for Computational
Linguistics. %(https://aclanthology.org/2023.emnlp-main.349/)
+
- Matt Canute, Mali Jin, Hannah Holtzclaw, Alberto Lusoli, Philippa Adams,
Mugdha Pandya, Maite Taboada, Diana Maynard, and Wendy Hui Kyong Chun. 2023.
Dimensions of Online Conflict: Towards Modeling Agonism. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 12194–12209,
Singapore. Association for Computational Linguistics.
%(https://aclanthology.org/2023.findings-emnlp.816/)
+- Ben Wu, Olesya Razuvayevskaya, Freddy Heppell, João A. Leite, Carolina
Scarton, Kalina Bontcheva, Xingyi Song. SheffieldVeraAI at SemEval-2023 Task 3:
Mono and Multilingual Approaches for News Genre, Topic and Persuasion Technique
Classification. In Proceedings of the 17th International Workshop on Semantic
Evaluation (SemEval-2023), pages 1995–2008, Toronto, Canada. Association for
Computational Linguistics. %(https://aclanthology.org/2023.semeval-1.275/)
+
- Yida Mu, Kalina Bontcheva, and Nikolaos Aletras. "It's about Time:
Rethinking Evaluation on Rumor Detection Benchmarks using Chronological
Splits." EACL Findings (2023). %(https://arxiv.org/abs/2302.03147)
- Yida Mu, Mali Jin, Charlie Grimshaw, Carolina Scarton, Kalina Bontcheva, and
Xingyi Song. "VaxxHesitancy: A Dataset for Studying Hesitancy Towards COVID-19
Vaccination on Twitter." ICWSM (2023). %(https://arxiv.org/abs/2301.06660)
This was sent by the SourceForge.net collaborative development platform, the
world's largest Open Source development site.
_______________________________________________
GATE-cvs mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/gate-cvs