https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77776

Jakub Jelinek <jakub at gcc dot gnu.org> changed:

           What    |Removed                     |Added
----------------------------------------------------------------------------
                 CC|                            |jakub at gcc dot gnu.org

--- Comment #16 from Jakub Jelinek <jakub at gcc dot gnu.org> ---
(In reply to Matthias Kretz (Vir) from comment #15)
> Your implementation still needs to solve:
> 
> 1. Loss of precision because of division & subsequent scaling by max. Users
> comparing std::hypot(x, y, z) against a simple std::sqrt(x * x + y * y + z *
> z) might wonder why they want to use std::hypot if it's less precise.
> 
> 2. Relatively high cost (in latency and throughput) because of the three
> divisions. You could replace it with scale = 1/max; x *= scale; ... But that
> can reduce precision even further.
> 
> 3. Summation of the x, y, and z squares isn't associative if you care about
> precision. A high quality implementation needs to add the two lowest values
> first.
> 
> Here's a precise but inefficient implementation:
> (https://compiler-explorer.com/z/ocGPnsYE3)
> 
> template <typename T>
> [[gnu::optimize("-fno-unsafe-math-optimizations")]]
> T
> hypot3(T x, T y, T z)
> {
>   x = std::abs(x);
>   y = std::abs(y);
>   z = std::abs(z);
>   if (std::isinf(x) || std::isinf(y) || std::isinf(z))
>     return std::__infinity_v<T>;
>   else if (std::isnan(x) || std::isnan(y) || std::isnan(z))
>     return std::__quiet_NaN_v<T>;
>   else if (x == y && y == z)
>     return x * std::sqrt(T(3));
>   else if (z == 0 && y == 0)
>     return x;
>   else if (x == 0 && z == 0)
>     return y;
>   else if (x == 0 && y == 0)
>     return z;
>   else
>     {
>       T hi = std::max(std::max(x, y), z);
>       T lo0 = std::min(std::max(x, y), z);
>       T lo1 = std::min(x, y);
>       int e = 0;
>       hi = std::frexp(hi, &e);
>       lo0 = std::ldexp(lo0, -e);
>       lo1 = std::ldexp(lo1, -e);
>       T lo = lo0 * lo0 + lo1 * lo1;
>       return std::ldexp(std::sqrt(hi * hi + lo), e);
>     }
> }
> 
> AFAIK
> https://gcc.gnu.org/git/?p=gcc.git;a=blob;f=libstdc%2B%2B-v3/include/
> experimental/bits/simd_math.h;h=06e7b4496f9917f886f66fbd7629700dd17e55f9;
> hb=HEAD#l1168 is a precise and efficient implementation. It also avoids
> division altogether unless an input is subnormal.

What glibc does there for the 2 argument hypot is after handling the non-finite
cases finds the minimum and maximum and uses just normal multiplication,
addition + sqrt for the common case where maximum isn't too large and minimum
isn't too small.
So, no need to use frexp/ldexp, just comparisons of hi above against sqrt of
(max finite / 3), in that case scale by multiplying all 3 args by some
appropriate scale constant, and similarly otherwise if lo1 is too small by some
large scale.

Reply via email to