Hi Mikael,

thanks for the review.

Here is what I committed.

Regards

        Thomas

2015-05-10  Thomas Koenig  <tkoe...@gcc.gnu.org>

        PR fortran/66041
        * frontend-passes.c (scalarized_expr): Set correct dimension and
        shape for the expression to be passed to lbound. Remove trailing
        references after array refrence.
        (inline_matmul_assign):  Remove gfc_copy_expr from calls
        to scalarized_expr().

2015-05-10  Thomas Koenig  <tkoe...@gcc.gnu.org>

        PR fortran/66041
        * gfortran.dg/inline_matmul_7.f90:  New test.
        * gfortran.dg/inline_matmul_8.f90:  New test.
        * gfortran.dg/inline_matmul_9.f90:  New test.

Index: frontend-passes.c
===================================================================
--- frontend-passes.c	(Revision 222864)
+++ frontend-passes.c	(Arbeitskopie)
@@ -2607,18 +2607,55 @@ scalarized_expr (gfc_expr *e_in, gfc_expr **index,
 		}
 	      else
 		{
+		  gfc_expr *lbound_e;
+		  gfc_ref *ref;
+
+		  lbound_e = gfc_copy_expr (e_in);
+
+		  for (ref = lbound_e->ref; ref; ref = ref->next)
+		    if (ref->type == REF_ARRAY
+			&& (ref->u.ar.type == AR_FULL
+			    || ref->u.ar.type == AR_SECTION))
+		      break;
+
+		  if (ref->next)
+		    {
+		      gfc_free_ref_list (ref->next);
+		      ref->next = NULL;
+		    }
+
 		  if (!was_fullref)
 		    {
 		      /* Look at full individual sections, like a(:).  The first index
 			 is the lbound of a full ref.  */
-
+		      int j;
 		      gfc_array_ref *ar;
 
-		      ar = gfc_find_array_ref (e_in);
+		      ar = &ref->u.ar;
 		      ar->type = AR_FULL;
+		      for (j = 0; j < ar->dimen; j++)
+			{
+			  gfc_free_expr (ar->start[j]);
+			  ar->start[j] = NULL;
+			  gfc_free_expr (ar->end[j]);
+			  ar->end[j] = NULL;
+			  gfc_free_expr (ar->stride[j]);
+			  ar->stride[j] = NULL;
+			}
+
+		      /* We have to get rid of the shape, if there is one.  Do
+			 so by freeing it and calling gfc_resolve to rebuild
+			 it, if necessary.  */
+
+		      if (lbound_e->shape)
+			gfc_free_shape (&(lbound_e->shape), lbound_e->rank);
+
+		      lbound_e->rank = ar->dimen;
+		      gfc_resolve_expr (lbound_e);
 		    }
-		  lbound = get_array_inq_function (GFC_ISYM_LBOUND, e_in,
-						   i_index + 1);
+		  lbound = get_array_inq_function (GFC_ISYM_LBOUND, lbound_e,
+						   i + 1);
+		  gfc_free_expr (lbound_e);
 		}
 	      
 	      ar->dimen_type[i] = DIMEN_ELEMENT;
@@ -2639,6 +2676,7 @@ scalarized_expr (gfc_expr *e_in, gfc_expr **index,
 	  i_index ++;
 	}
     }
+
   return e;
 }
 
@@ -2929,15 +2967,15 @@ inline_matmul_assign (gfc_code **c, int *walk_subt
 
       list[0] = var_3;
       list[1] = var_1;
-      cscalar = scalarized_expr (gfc_copy_expr (co->expr1), list, 2);
+      cscalar = scalarized_expr (co->expr1, list, 2);
 
       list[0] = var_3;
       list[1] = var_2;
-      ascalar = scalarized_expr (gfc_copy_expr (matrix_a), list, 2);
+      ascalar = scalarized_expr (matrix_a, list, 2);
 
       list[0] = var_2;
       list[1] = var_1;
-      bscalar = scalarized_expr (gfc_copy_expr (matrix_b), list, 2);
+      bscalar = scalarized_expr (matrix_b, list, 2);
 
       break;
 
@@ -2955,14 +2993,14 @@ inline_matmul_assign (gfc_code **c, int *walk_subt
       var_2 = do_2->ext.iterator->var;
 
       list[0] = var_2;
-      cscalar = scalarized_expr (gfc_copy_expr (co->expr1), list, 1);
+      cscalar = scalarized_expr (co->expr1, list, 1);
 
       list[0] = var_2;
       list[1] = var_1;
-      ascalar = scalarized_expr (gfc_copy_expr (matrix_a), list, 2);
+      ascalar = scalarized_expr (matrix_a, list, 2);
 
       list[0] = var_1;
-      bscalar = scalarized_expr (gfc_copy_expr (matrix_b), list, 1);
+      bscalar = scalarized_expr (matrix_b, list, 1);
 
       break;
 
@@ -2980,14 +3018,14 @@ inline_matmul_assign (gfc_code **c, int *walk_subt
       var_2 = do_2->ext.iterator->var;
 
       list[0] = var_1;
-      cscalar = scalarized_expr (gfc_copy_expr (co->expr1), list, 1);
+      cscalar = scalarized_expr (co->expr1, list, 1);
 
       list[0] = var_2;
-      ascalar = scalarized_expr (gfc_copy_expr (matrix_a), list, 1);
+      ascalar = scalarized_expr (matrix_a, list, 1);
 
       list[0] = var_2;
       list[1] = var_1;
-      bscalar = scalarized_expr (gfc_copy_expr (matrix_b), list, 2);
+      bscalar = scalarized_expr (matrix_b, list, 2);
 
       break;
 
! { dg-do  run }
! { dg-options "-ffrontend-optimize -fdump-tree-original" }

program main
  implicit none
  real(kind=8), ALLOCATABLE :: a(:,:), b(:,:), v1(:), v2(:)
  real(kind=8), dimension(3,3) :: v1res, v2res
  integer :: n, i

  data v1res/ 442.d0,   -492.d0,   586.d0, &
            -4834.d0,   5694.d0, -7066.d0, &
            13042.d0, -15450.d0, 19306.d0 /

  data v2res/ 5522.d0,  -6310.d0,   7754.d0, &
             -7794.d0,   8982.d0, -11034.d0, &
             10490.d0, -12160.d0,  14954.d0 /
  n = 3

  ALLOCATE(a(N,N),b(N,N),v1(N), v2(N))

  a = reshape([((-1)**i*(-i-5)*(i+3)+5,i=1,n**2)], shape(a))
  b = reshape([((-1)**i*(-i-1)*(i-2),i=1,n**2)], shape(a))

  DO i=1,N
     v1 = MATMUL(a,b(:,i))
     if (any(abs(v1-v1res(:,i)) > 1e-10)) call abort

     v2 = MATMUL(a,b(i,:))
     if (any(abs(v2-v2res(:,i)) > 1e-10)) call abort

  ENDDO

END program main
! { dg-final { scan-tree-dump-times "_gfortran_matmul" 0 "original" } }
! { dg-final { cleanup-tree-dump "original" } }
! { dg-do  run }
! { dg-options "-ffrontend-optimize -fdump-tree-original" }
! PR 66041 - this used to ICE with an incomplete fix for the PR.
program main
  implicit none
  real, dimension(1,-2:0) :: a1
  real, dimension(3,2) :: b1
  real, dimension(2) :: c1

  data a1 /17., -23., 29./
  data b1 / 2.,  -3.,  5.,  -7., 11., -13./

  c1 = matmul(a1(1,:), b1)
  if (any (c1-[248., -749.] /= 0.)) call abort
end program main

! { dg-final { scan-tree-dump-times "_gfortran_matmul" 0 "original" } }
! { dg-final { cleanup-tree-dump "original" } }
! { dg-do  run }
! { dg-options "-ffrontend-optimize -fdump-tree-original" }
! PR 66041 - this used to ICE with an incomplete fix for the PR.
program main
  implicit none
  type :: t
    real :: c
  end type t
  type(t), dimension(1,-2:0) :: a1
  real, dimension(3,2) :: b1
  real, dimension(2) :: c1
  real, dimension(1,2) :: c2

  data a1%c /17., -23., 29./
  data b1 / 2.,  -3.,  5.,  -7., 11., -13./

  c1 = matmul(a1(1,:)%c, b1)
  if (any (c1-[248., -749.] /= 0.)) call abort

  c2 = matmul(a1%c, b1)
  if (any (c2-reshape([248., -749.],shape(c2)) /= 0.)) call abort
end program main

! { dg-final { scan-tree-dump-times "_gfortran_matmul" 0 "original" } }
! { dg-final { cleanup-tree-dump "original" } }

Reply via email to