Hi! The x86 intrinsics allow andnot on MODE_VECTOR_FLOAT modes, but such modes have NULL CONSTM1_RTX and are not appropriate for the transformation anyway.
The following patch fixes that, ok if bootstrap/regtest passes? Or would you prefer to replace the && CONSTM1_RTX (mode) check with e.g. && (MODE_CLASS (mode) == MODE_INT || MODE_CLASS (mode) == MODE_VECTOR_INT) (dunno if we want to handle that way also partial int modes or not, no experience with those)? The transformation relies on 2's complement, so certainly doesn't apply to floating modes (scalar or vector), but even MODE_COMPLEX_INT doesn't have CONSTM1_RTX. 2017-04-11 Jakub Jelinek <ja...@redhat.com> PR rtl-optimization/80385 * simplify-rtx.c (simplify_unary_operation_1): Don't transform (not (neg X)) into (plus X -1) for complex or non-integral modes. * g++.dg/opt/pr80385.C: New test. --- gcc/simplify-rtx.c.jj 2017-04-04 07:32:57.000000000 +0200 +++ gcc/simplify-rtx.c 2017-04-11 12:26:05.550834274 +0200 @@ -932,8 +932,10 @@ simplify_unary_operation_1 (enum rtx_cod && XEXP (op, 1) == constm1_rtx) return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode); - /* Similarly, (not (neg X)) is (plus X -1). */ - if (GET_CODE (op) == NEG) + /* Similarly, (not (neg X)) is (plus X -1). Only do this for + modes that have CONSTM1_RTX, i.e. MODE_INT, MODE_PARTIAL_INT + and MODE_VECTOR_INT. */ + if (GET_CODE (op) == NEG && CONSTM1_RTX (mode)) return simplify_gen_binary (PLUS, mode, XEXP (op, 0), CONSTM1_RTX (mode)); --- gcc/testsuite/g++.dg/opt/pr80385.C.jj 2017-04-11 12:36:36.421806796 +0200 +++ gcc/testsuite/g++.dg/opt/pr80385.C 2017-04-11 12:36:11.000000000 +0200 @@ -0,0 +1,14 @@ +// PR rtl-optimization/80385 +// { dg-do compile { target { i?86-*-* x86_64-*-* } } } +// { dg-options "-Ofast -msse2" } + +#include <x86intrin.h> + +__m128 a, e; +struct A { __m128 b; A (); A (__m128 x) : b(x) {} }; +A operator+ (A, A); +A operator- (A) { __m128 c = -a; return c; } +A foo (A x) { __m128 d = x.b; return _mm_andnot_ps (d, e); } +struct B { A n[1]; }; +void bar (B x) { A f = foo (x.n[0]); A g = f + A (); } +void baz () { B h; B i; A j; i.n[0] = -j; h = i; B k = h; bar (k); } Jakub