On Thu, May 4, 2017 at 2:12 PM, Richard Biener
<richard.guent...@gmail.com> wrote:
> On Wed, May 3, 2017 at 10:00 AM, Richard Sandiford
> <richard.sandif...@linaro.org> wrote:
>> This patch tries to calculate conservatively-correct distance
>> vectors for two references whose base addresses are not the same.
>> It sets a new flag DDR_COULD_BE_INDEPENDENT_P if the dependence
>> isn't guaranteed to occur.
>>
>> The motivating example is:
>>
>>   struct s { int x[8]; };
>>   void
>>   f (struct s *a, struct s *b)
>>   {
>>     for (int i = 0; i < 8; ++i)
>>       a->x[i] += b->x[i];
>>   }
>>
>> in which the "a" and "b" accesses are either independent or have a
>> dependence distance of 0 (assuming -fstrict-aliasing).  Neither case
>> prevents vectorisation, so we can vectorise without an alias check.
>>
>> I'd originally wanted to do the same thing for arrays as well, e.g.:
>>
>>   void
>>   f (int a[][8], struct b[][8])
>>   {
>>     for (int i = 0; i < 8; ++i)
>>       a[0][i] += b[0][i];
>>   }
>>
>> I think this is valid because C11 6.7.6.2/6 says:
>>
>>   For two array types to be compatible, both shall have compatible
>>   element types, and if both size specifiers are present, and are
>>   integer constant expressions, then both size specifiers shall have
>>   the same constant value.
>>
>> So if we access an array through an int (*)[8], it must have type X[8]
>> or X[], where X is compatible with int.  It doesn't seem possible in
>> either case for "a[0]" and "b[0]" to overlap when "a != b".
>>
>> However, Richard B said that (at least in gimple) we support arbitrary
>> overlap of arrays and allow arrays to be accessed with different
>> dimensionality.  There are examples of this in PR50067.  I've therefore
>> only handled references that end in a structure field access.
>>
>> There are two ways of handling these dependences in the vectoriser:
>> use them to limit VF, or check at runtime as before.  I've gone for
>> the approach of checking at runtime if we can, to avoid limiting VF
>> unnecessarily.  We still fall back to a VF cap when runtime checks
>> aren't allowed.
>>
>> The patch tests whether we queued an alias check with a dependence
>> distance of X and then picked a VF <= X, in which case it's safe to
>> drop the alias check.  Since vect_prune_runtime_alias_check_list can
>> be called twice with different VF for the same loop, it's no longer
>> safe to clear may_alias_ddrs on exit.  Instead we should use
>> comp_alias_ddrs to check whether versioning is necessary.
>>
>> Tested on aarch64-linux-gnu and x86_64-linux-gnu.  OK to install?
>
> You seem to do your "fancy" thing but also later compute the old
> base equality anyway (for same_base_p).  It looks to me for this
> case the new fancy code can be simply skipped, keeping num_dimensions
> as before?
>
> +      /* Try to approach equal type sizes.  */
> +      if (!COMPLETE_TYPE_P (type_a)
> +         || !COMPLETE_TYPE_P (type_b)
> +         || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
> +         || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
> +       break;
>
> ah, interesting idea to avoid a quadratic search.  Note that you should
> conservatively handle both BIT_FIELD_REF and VIEW_CONVERT_EXPR
> as they are used for type-punning.  I see
> nonoverlapping_component_refs_of_decl_p
> should simply skip ARRAY_REFs - but I also see there:
>
>       /* ??? We cannot simply use the type of operand #0 of the refs here
>          as the Fortran compiler smuggles type punning into COMPONENT_REFs
>          for common blocks instead of using unions like everyone else.  */
>       tree type1 = DECL_CONTEXT (field1);
>       tree type2 = DECL_CONTEXT (field2);
>
> so you probably can't simply use TREE_TYPE (outer_ref) for type compatibility.
> You also may not use types_compatible_p here as for LTO that is _way_ too
> lax for aggregates.  The above uses
>
>       /* We cannot disambiguate fields in a union or qualified union.  */
>       if (type1 != type2 || TREE_CODE (type1) != RECORD_TYPE)
>          return false;
>
> so you should also bail out on unions here, rather than the check you do 
> later.
>
> You seem to rely on getting an access_fn entry for each handled_component_p.
> It looks like this is the case -- we even seem to stop at unions (with the 
> same
> fortran "issue").  I'm not sure that's the best thing to do but you
> rely on that.
>
> I don't understand the looping, it needs more comments.  You seem to be
> looking for the innermost compatible RECORD_TYPE but then num_dimensions
> is how many compatible refs you found on the way (with incompatible ones
> not counting?!).  What about an inner varying array of structs?  This seems to
> be disregarded in the analysis now?  Thus, a[i].s.b[i].j vs. __real
> b[i].s.b[i].j?
>
> nonoverlapping_component_refs_of_decl_p/nonoverlapping_component_refs_p
> conveniently start from the other
> end of the ref here.

That said, for the motivational cases we either have one ref having
more dimensions
than the other (the __real vs. full complex access) or they have the same number
of dimensions (and no access fn for the base).

For the first case we should simply "drop" access_fns of the larger dimensional
ref (from the start, plus outer component refs) up to the point the
number of dimensions
are equal.

Then we have the case of

  ! types_compatible_p (TREE_TYPE (base_a), TREE_TYPE (base_b))

where we have to punt.

Then we have the case of

  ! operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)

which is where the new code should kick in to see if we can drop access_fns
from the other end (as unanalyzable but either having distance zero or not
aliased because of TBAA).

At least your testcases suggest you do not want to handle

 struct s { int x[N]; };
 struct r { struct s s; };
 f (struct s *a, struct r *b)
 {
    for (i = 0; i < N; ++i)
      a->s.x[i] = b->x[i];
 }

?

With this example your loop which seems to search for a "common" sequence
in (different) midst of the reference trees makes more sense (still that loop is
awkward to understand).

Richard.

> Richard.
>
>> Thanks,
>> Richard
>>
>>
>> gcc/
>> 2017-05-03  Richard Sandiford  <richard.sandif...@linaro.org>
>>
>>         * tree-data-ref.h (subscript): Add access_fn field.
>>         (data_dependence_relation): Add could_be_independent_p.
>>         (SUB_ACCESS_FN, DDR_COULD_BE_INDEPENDENT_P): New macros.
>>         (same_access_functions): Move to tree-data-ref.c.
>>         * tree-data-ref.c (ref_contains_union_access_p): New function.
>>         (dump_data_dependence_relation): Use SUB_ACCESS_FN instead of
>>         DR_ACCESS_FN.
>>         (constant_access_functions): Likewise.
>>         (add_other_self_distances): Likewise.
>>         (same_access_functions): Likewise.  (Moved from tree-data-ref.h.)
>>         (initialize_data_dependence_relation): Use XCNEW and remove
>>         explicit zeroing of DDR_REVERSED_P.  Look for a subsequence
>>         of access functions that have the same type.  Allow the
>>         subsequence to end with different bases in some circumstances.
>>         Record the chosen access functions in SUB_ACCESS_FN.
>>         (build_classic_dist_vector_1): Replace ddr_a and ddr_b with
>>         a_index and b_index.  Use SUB_ACCESS_FN instead of DR_ACCESS_FN.
>>         (subscript_dependence_tester_1): Likewise dra and drb.
>>         (build_classic_dist_vector): Update calls accordingly.
>>         (subscript_dependence_tester): Likewise.
>>         * tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Check
>>         DDR_COULD_BE_INDEPENDENT_P.
>>         * tree-vectorizer.h (LOOP_REQUIRES_VERSIONING_FOR_ALIAS): Test
>>         comp_alias_ddrs instead of may_alias_ddrs.
>>         * tree-vect-data-refs.c (vect_analyze_data_ref_dependence): Try
>>         to mark for aliasing if DDR_COULD_BE_INDEPENDENT_P, but fall back
>>         to using the recorded distance vectors if that fails.
>>         (dependence_distance_ge_vf): New function.
>>         (vect_prune_runtime_alias_test_list): Use it.  Don't clear
>>         LOOP_VINFO_MAY_ALIAS_DDRS.
>>
>> gcc/testsuite/
>>         * gcc.dg/vect/vect-alias-check-3.c: New test.
>>         * gcc.dg/vect/vect-alias-check-4.c: Likewise.
>>         * gcc.dg/vect/vect-alias-check-5.c: Likewise.
>>
>> Index: gcc/tree-data-ref.h
>> ===================================================================
>> --- gcc/tree-data-ref.h 2017-05-03 08:48:11.977015306 +0100
>> +++ gcc/tree-data-ref.h 2017-05-03 08:48:48.737038502 +0100
>> @@ -191,6 +191,9 @@ struct conflict_function
>>
>>  struct subscript
>>  {
>> +  /* The access functions of the two references.  */
>> +  tree access_fn[2];
>> +
>>    /* A description of the iterations for which the elements are
>>       accessed twice.  */
>>    conflict_function *conflicting_iterations_in_a;
>> @@ -209,6 +212,7 @@ struct subscript
>>
>>  typedef struct subscript *subscript_p;
>>
>> +#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
>>  #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
>>  #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
>>  #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
>> @@ -264,6 +268,33 @@ struct data_dependence_relation
>>    /* Set to true when the dependence relation is on the same data
>>       access.  */
>>    bool self_reference_p;
>> +
>> +  /* True if the dependence described is conservatively correct rather
>> +     than exact, and if it is still possible for the accesses to be
>> +     conditionally independent.  For example, the a and b references in:
>> +
>> +       struct s *a, *b;
>> +       for (int i = 0; i < n; ++i)
>> +         a->f[i] += b->f[i];
>> +
>> +     conservatively have a distance vector of (0), for the case in which
>> +     a == b, but the accesses are independent if a != b.  Similarly,
>> +     the a and b references in:
>> +
>> +       struct s *a, *b;
>> +       for (int i = 0; i < n; ++i)
>> +         a[0].f[i] += b[i].f[i];
>> +
>> +     conservatively have a distance vector of (0), but they are indepenent
>> +     when a != b + i.  In contrast, the references in:
>> +
>> +       struct s *a;
>> +       for (int i = 0; i < n; ++i)
>> +         a->f[i] += a->f[i];
>> +
>> +     have the same distance vector of (0), but the accesses can never be
>> +     independent.  */
>> +  bool could_be_independent_p;
>>  };
>>
>>  typedef struct data_dependence_relation *ddr_p;
>> @@ -294,6 +325,7 @@ #define DDR_DIR_VECT(DDR, I) \
>>  #define DDR_DIST_VECT(DDR, I) \
>>    DDR_DIST_VECTS (DDR)[I]
>>  #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
>> +#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
>>
>>
>>  bool dr_analyze_innermost (struct data_reference *, struct loop *);
>> @@ -372,22 +404,6 @@ same_data_refs (data_reference_p a, data
>>        return false;
>>
>>    return true;
>> -}
>> -
>> -/* Return true when the DDR contains two data references that have the
>> -   same access functions.  */
>> -
>> -static inline bool
>> -same_access_functions (const struct data_dependence_relation *ddr)
>> -{
>> -  unsigned i;
>> -
>> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>> -    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
>> -                         DR_ACCESS_FN (DDR_B (ddr), i)))
>> -      return false;
>> -
>> -  return true;
>>  }
>>
>>  /* Returns true when all the dependences are computable.  */
>> Index: gcc/tree-data-ref.c
>> ===================================================================
>> --- gcc/tree-data-ref.c 2017-02-23 19:54:15.000000000 +0000
>> +++ gcc/tree-data-ref.c 2017-05-03 08:48:48.737038502 +0100
>> @@ -123,8 +123,7 @@ Software Foundation; either version 3, o
>>  } dependence_stats;
>>
>>  static bool subscript_dependence_tester_1 (struct data_dependence_relation 
>> *,
>> -                                          struct data_reference *,
>> -                                          struct data_reference *,
>> +                                          unsigned int, unsigned int,
>>                                            struct loop *);
>>  /* Returns true iff A divides B.  */
>>
>> @@ -144,6 +143,21 @@ int_divides_p (int a, int b)
>>    return ((b % a) == 0);
>>  }
>>
>> +/* Return true if reference REF contains a union access.  */
>> +
>> +static bool
>> +ref_contains_union_access_p (tree ref)
>> +{
>> +  while (handled_component_p (ref))
>> +    {
>> +      ref = TREE_OPERAND (ref, 0);
>> +      if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
>> +         || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
>> +       return true;
>> +    }
>> +  return false;
>> +}
>> +
>>
>>
>>  /* Dump into FILE all the data references from DATAREFS.  */
>> @@ -433,13 +447,14 @@ dump_data_dependence_relation (FILE *out
>>        unsigned int i;
>>        struct loop *loopi;
>>
>> -      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>> +      subscript *sub;
>> +      FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>>         {
>>           fprintf (outf, "  access_fn_A: ");
>> -         print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
>> +         print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0), 0);
>>           fprintf (outf, "  access_fn_B: ");
>> -         print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
>> -         dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
>> +         print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1), 0);
>> +         dump_subscript (outf, sub);
>>         }
>>
>>        fprintf (outf, "  inner loop index: %d\n", DDR_INNER_LOOP (ddr));
>> @@ -1484,11 +1499,10 @@ initialize_data_dependence_relation (str
>>    struct data_dependence_relation *res;
>>    unsigned int i;
>>
>> -  res = XNEW (struct data_dependence_relation);
>> +  res = XCNEW (struct data_dependence_relation);
>>    DDR_A (res) = a;
>>    DDR_B (res) = b;
>>    DDR_LOOP_NEST (res).create (0);
>> -  DDR_REVERSED_P (res) = false;
>>    DDR_SUBSCRIPTS (res).create (0);
>>    DDR_DIR_VECTS (res).create (0);
>>    DDR_DIST_VECTS (res).create (0);
>> @@ -1506,82 +1520,217 @@ initialize_data_dependence_relation (str
>>        return res;
>>      }
>>
>> -  /* The case where the references are exactly the same.  */
>> -  if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
>> +  unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
>> +  unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
>> +  if (num_dimensions_a == 0 || num_dimensions_b == 0)
>>      {
>> -      if ((loop_nest.exists ()
>> -          && !object_address_invariant_in_loop_p (loop_nest[0],
>> -                                                  DR_BASE_OBJECT (a)))
>> -         || DR_NUM_DIMENSIONS (a) == 0)
>> -       {
>> -         DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>> -         return res;
>> -       }
>> -      DDR_AFFINE_P (res) = true;
>> -      DDR_ARE_DEPENDENT (res) = NULL_TREE;
>> -      DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
>> -      DDR_LOOP_NEST (res) = loop_nest;
>> -      DDR_INNER_LOOP (res) = 0;
>> -      DDR_SELF_REFERENCE (res) = true;
>> -      for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
>> -       {
>> -         struct subscript *subscript;
>> +      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>> +      return res;
>> +    }
>> +
>> +  /* For unconstrained bases, the outer (highest-index) subscript
>> +     describes a variation in the base of the original DR_REF rather
>> +     than a component access.  We have no type that accurately describes
>> +     the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
>> +     applying the outer subscript) so limit the search to the last real
>> +     component access.
>> +
>> +     E.g. for:
>>
>> -         subscript = XNEW (struct subscript);
>> -         SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
>> -         SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
>> -         SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
>> -         SUB_DISTANCE (subscript) = chrec_dont_know;
>> -         DDR_SUBSCRIPTS (res).safe_push (subscript);
>> +       void
>> +       f (int a[][8], int b[][8])
>> +       {
>> +        for (int i = 0; i < 8; ++i)
>> +          a[i * 2][0] = b[i][0];
>>         }
>> -      return res;
>> +
>> +     the a and b accesses have a single ARRAY_REF component reference [0]
>> +     but have two subscripts.  */
>> +  if (DR_UNCONSTRAINED_BASE (a))
>> +    num_dimensions_a -= 1;
>> +  if (DR_UNCONSTRAINED_BASE (b))
>> +    num_dimensions_b -= 1;
>> +
>> +  /* Now look for two sequences of component references that have the same
>> +     type in both A and B.  The first sequence includes an arbitrary mixture
>> +     of array and structure references while the second always ends on a
>> +     structure reference.
>> +
>> +     The former (arbitrary) sequence uses access functions:
>> +
>> +        [START_A, START_A + NUM_DIMENSIONS) of A
>> +        [START_B, START_B + NUM_DIMENSIONS) of B
>> +
>> +     The latter sequence uses access functions:
>> +
>> +        [STRUCT_START_A, STRUCT_START_A + STRUCT_NUM_DIMENSIONS) of A
>> +        [STRUCT_START_B, STRUCT_START_B + STRUCT_NUM_DIMENSIONS) of B
>> +
>> +     STRUCT_REF_A and STRUCT_REF_B are the outer references for the
>> +     latter sequence.  */
>> +  unsigned int start_a = 0;
>> +  unsigned int start_b = 0;
>> +  unsigned int num_dimensions = 0;
>> +  unsigned int struct_start_a = 0;
>> +  unsigned int struct_start_b = 0;
>> +  unsigned int struct_num_dimensions = 0;
>> +  unsigned int index_a = 0;
>> +  unsigned int index_b = 0;
>> +  tree next_ref_a = DR_REF (a);
>> +  tree next_ref_b = DR_REF (b);
>> +  tree struct_ref_a = NULL_TREE;
>> +  tree struct_ref_b = NULL_TREE;
>> +  while (index_a < num_dimensions_a && index_b < num_dimensions_b)
>> +    {
>> +      gcc_checking_assert (handled_component_p (next_ref_a));
>> +      gcc_checking_assert (handled_component_p (next_ref_b));
>> +      tree outer_ref_a = TREE_OPERAND (next_ref_a, 0);
>> +      tree outer_ref_b = TREE_OPERAND (next_ref_b, 0);
>> +      tree type_a = TREE_TYPE (outer_ref_a);
>> +      tree type_b = TREE_TYPE (outer_ref_b);
>> +      if (types_compatible_p (type_a, type_b))
>> +       {
>> +         /* This pair of accesses belong to a suitable sequence.  */
>> +         if (start_a + num_dimensions != index_a
>> +             || start_b + num_dimensions != index_b)
>> +           {
>> +             /* Start a new sequence here.  */
>> +             start_a = index_a;
>> +             start_b = index_b;
>> +             num_dimensions = 0;
>> +           }
>> +         num_dimensions += 1;
>> +         if (TREE_CODE (type_a) == RECORD_TYPE)
>> +           {
>> +             struct_start_a = start_a;
>> +             struct_start_b = start_b;
>> +             struct_num_dimensions = num_dimensions;
>> +             struct_ref_a = outer_ref_a;
>> +             struct_ref_b = outer_ref_b;
>> +           }
>> +         next_ref_a = outer_ref_a;
>> +         next_ref_b = outer_ref_b;
>> +         index_a += 1;
>> +         index_b += 1;
>> +         continue;
>> +       }
>> +      /* Try to approach equal type sizes.  */
>> +      if (!COMPLETE_TYPE_P (type_a)
>> +         || !COMPLETE_TYPE_P (type_b)
>> +         || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
>> +         || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
>> +       break;
>> +      unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT 
>> (type_a));
>> +      unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT 
>> (type_b));
>> +      if (size_a <= size_b)
>> +       {
>> +         index_a += 1;
>> +         next_ref_a = outer_ref_a;
>> +       }
>> +      if (size_b <= size_a)
>> +       {
>> +         index_b += 1;
>> +         next_ref_b = outer_ref_b;
>> +       }
>>      }
>>
>> -  /* If the references do not access the same object, we do not know
>> -     whether they alias or not.  We do not care about TBAA or alignment
>> -     info so we can use OEP_ADDRESS_OF to avoid false negatives.
>> -     But the accesses have to use compatible types as otherwise the
>> -     built indices would not match.  */
>> -  if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 
>> OEP_ADDRESS_OF)
>> -      || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)),
>> -                             TREE_TYPE (DR_BASE_OBJECT (b))))
>> +  /* See whether the sequence ends at the base and whether the two bases
>> +     are equal.  We do not care about TBAA or alignment info so we can use
>> +     OEP_ADDRESS_OF to avoid false negatives.  */
>> +  tree base_a = DR_BASE_OBJECT (a);
>> +  tree base_b = DR_BASE_OBJECT (b);
>> +  bool same_base_p = (start_a + num_dimensions == num_dimensions_a
>> +                     && start_b + num_dimensions == num_dimensions_b
>> +                     && DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE 
>> (b)
>> +                     && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
>> +                     && types_compatible_p (TREE_TYPE (base_a),
>> +                                            TREE_TYPE (base_b))
>> +                     && (!loop_nest.exists ()
>> +                         || (object_address_invariant_in_loop_p
>> +                             (loop_nest[0], base_a))));
>> +
>> +  /* If the bases are the same, we can include the base variation too.
>> +     E.g. the b accesses in:
>> +
>> +       for (int i = 0; i < n; ++i)
>> +         b[i + 4][0] = b[i][0];
>> +
>> +     have a definite dependence distance of 4, while for:
>> +
>> +       for (int i = 0; i < n; ++i)
>> +         a[i + 4][0] = b[i][0];
>> +
>> +     the dependence distance depends on the gap between a and b.
>> +
>> +     If the bases are different then we can only rely on the sequence
>> +     rooted at a structure access, since arrays are allowed to overlap
>> +     arbitrarily and change shape arbitrarily.  E.g. we treat this as
>> +     valid code:
>> +
>> +       int a[256];
>> +       ...
>> +       ((int (*)[4][3])&a[1])[i][0] += ((int (*)[4][3])&a[2])[i][0];
>> +
>> +     where two lvalues with the same int[4][3] type overlap, and where
>> +     both lvalues are distinct from the object's declared type.  */
>> +  if (same_base_p)
>>      {
>> -      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>> -      return res;
>> +      if (DR_UNCONSTRAINED_BASE (a))
>> +       num_dimensions += 1;
>> +    }
>> +  else
>> +    {
>> +      start_a = struct_start_a;
>> +      start_b = struct_start_b;
>> +      num_dimensions = struct_num_dimensions;
>>      }
>>
>> -  /* If the base of the object is not invariant in the loop nest, we cannot
>> -     analyze it.  TODO -- in fact, it would suffice to record that there may
>> -     be arbitrary dependences in the loops where the base object varies.  */
>> -  if ((loop_nest.exists ()
>> -       && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT 
>> (a)))
>> -      || DR_NUM_DIMENSIONS (a) == 0)
>> +  /* Punt if we didn't find a suitable sequence.  */
>> +  if (num_dimensions == 0)
>>      {
>>        DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>>        return res;
>>      }
>>
>> -  /* If the number of dimensions of the access to not agree we can have
>> -     a pointer access to a component of the array element type and an
>> -     array access while the base-objects are still the same.  Punt.  */
>> -  if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
>> +  if (!same_base_p)
>>      {
>> -      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>> -      return res;
>> +      /* Partial overlap is possible for different bases when strict 
>> aliasing
>> +        is not in effect.  It's also possible if either base involves a 
>> union
>> +        access; e.g. for:
>> +
>> +          struct s1 { int a[2]; };
>> +          struct s2 { struct s1 b; int c; };
>> +          struct s3 { int d; struct s1 e; };
>> +          union u { struct s2 f; struct s3 g; } *p, *q;
>> +
>> +        the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
>> +        "p->g.e" (base "p->g") and might partially overlap the s1 at
>> +        "q->g.e" (base "q->g").  */
>> +      if (!flag_strict_aliasing
>> +         || ref_contains_union_access_p (struct_ref_a)
>> +         || ref_contains_union_access_p (struct_ref_b))
>> +       {
>> +         DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>> +         return res;
>> +       }
>> +
>> +      DDR_COULD_BE_INDEPENDENT_P (res) = true;
>>      }
>>
>>    DDR_AFFINE_P (res) = true;
>>    DDR_ARE_DEPENDENT (res) = NULL_TREE;
>> -  DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
>> +  DDR_SUBSCRIPTS (res).create (num_dimensions);
>>    DDR_LOOP_NEST (res) = loop_nest;
>>    DDR_INNER_LOOP (res) = 0;
>>    DDR_SELF_REFERENCE (res) = false;
>>
>> -  for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
>> +  for (i = 0; i < num_dimensions; ++i)
>>      {
>>        struct subscript *subscript;
>>
>>        subscript = XNEW (struct subscript);
>> +      SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, start_a + i);
>> +      SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, start_b + i);
>>        SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
>>        SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
>>        SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
>> @@ -3163,14 +3312,15 @@ add_outer_distances (struct data_depende
>>  }
>>
>>  /* Return false when fail to represent the data dependence as a
>> -   distance vector.  INIT_B is set to true when a component has been
>> +   distance vector.  A_INDEX is the index of the first reference
>> +   (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
>> +   second reference.  INIT_B is set to true when a component has been
>>     added to the distance vector DIST_V.  INDEX_CARRY is then set to
>>     the index in DIST_V that carries the dependence.  */
>>
>>  static bool
>>  build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
>> -                            struct data_reference *ddr_a,
>> -                            struct data_reference *ddr_b,
>> +                            unsigned int a_index, unsigned int b_index,
>>                              lambda_vector dist_v, bool *init_b,
>>                              int *index_carry)
>>  {
>> @@ -3188,8 +3338,8 @@ build_classic_dist_vector_1 (struct data
>>           return false;
>>         }
>>
>> -      access_fn_a = DR_ACCESS_FN (ddr_a, i);
>> -      access_fn_b = DR_ACCESS_FN (ddr_b, i);
>> +      access_fn_a = SUB_ACCESS_FN (subscript, a_index);
>> +      access_fn_b = SUB_ACCESS_FN (subscript, b_index);
>>
>>        if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
>>           && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
>> @@ -3249,10 +3399,11 @@ build_classic_dist_vector_1 (struct data
>>  constant_access_functions (const struct data_dependence_relation *ddr)
>>  {
>>    unsigned i;
>> +  subscript *sub;
>>
>> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>> -    if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
>> -       || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
>> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>> +    if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
>> +       || !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
>>        return false;
>>
>>    return true;
>> @@ -3315,10 +3466,11 @@ add_other_self_distances (struct data_de
>>    lambda_vector dist_v;
>>    unsigned i;
>>    int index_carry = DDR_NB_LOOPS (ddr);
>> +  subscript *sub;
>>
>> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
>> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>>      {
>> -      tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
>> +      tree access_fun = SUB_ACCESS_FN (sub, 0);
>>
>>        if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
>>         {
>> @@ -3330,7 +3482,7 @@ add_other_self_distances (struct data_de
>>                   return;
>>                 }
>>
>> -             access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
>> +             access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
>>
>>               if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
>>                 add_multivariate_self_dist (ddr, access_fun);
>> @@ -3401,6 +3553,23 @@ add_distance_for_zero_overlaps (struct d
>>      }
>>  }
>>
>> +/* Return true when the DDR contains two data references that have the
>> +   same access functions.  */
>> +
>> +static inline bool
>> +same_access_functions (const struct data_dependence_relation *ddr)
>> +{
>> +  unsigned i;
>> +  subscript *sub;
>> +
>> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>> +    if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
>> +                         SUB_ACCESS_FN (sub, 1)))
>> +      return false;
>> +
>> +  return true;
>> +}
>> +
>>  /* Compute the classic per loop distance vector.  DDR is the data
>>     dependence relation to build a vector from.  Return false when fail
>>     to represent the data dependence as a distance vector.  */
>> @@ -3432,8 +3601,7 @@ build_classic_dist_vector (struct data_d
>>      }
>>
>>    dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
>> -  if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
>> -                                   dist_v, &init_b, &index_carry))
>> +  if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, 
>> &index_carry))
>>      return false;
>>
>>    /* Save the distance vector if we initialized one.  */
>> @@ -3466,12 +3634,11 @@ build_classic_dist_vector (struct data_d
>>        if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
>>         {
>>           lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
>> -         if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
>> -                                             loop_nest))
>> +         if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
>>             return false;
>>           compute_subscript_distance (ddr);
>> -         if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
>> -                                           save_v, &init_b, &index_carry))
>> +         if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
>> +                                           &index_carry))
>>             return false;
>>           save_dist_v (ddr, save_v);
>>           DDR_REVERSED_P (ddr) = true;
>> @@ -3507,12 +3674,10 @@ build_classic_dist_vector (struct data_d
>>             {
>>               lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS 
>> (ddr));
>>
>> -             if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
>> -                                                 DDR_A (ddr), loop_nest))
>> +             if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
>>                 return false;
>>               compute_subscript_distance (ddr);
>> -             if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A 
>> (ddr),
>> -                                               opposite_v, &init_b,
>> +             if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, 
>> &init_b,
>>                                                 &index_carry))
>>                 return false;
>>
>> @@ -3591,13 +3756,13 @@ build_classic_dir_vector (struct data_de
>>      }
>>  }
>>
>> -/* Helper function.  Returns true when there is a dependence between
>> -   data references DRA and DRB.  */
>> +/* Helper function.  Returns true when there is a dependence between the
>> +   data references.  A_INDEX is the index of the first reference (0 for
>> +   DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference.  */
>>
>>  static bool
>>  subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
>> -                              struct data_reference *dra,
>> -                              struct data_reference *drb,
>> +                              unsigned int a_index, unsigned int b_index,
>>                                struct loop *loop_nest)
>>  {
>>    unsigned int i;
>> @@ -3609,8 +3774,8 @@ subscript_dependence_tester_1 (struct da
>>      {
>>        conflict_function *overlaps_a, *overlaps_b;
>>
>> -      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
>> -                                     DR_ACCESS_FN (drb, i),
>> +      analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
>> +                                     SUB_ACCESS_FN (subscript, b_index),
>>                                       &overlaps_a, &overlaps_b,
>>                                       &last_conflicts, loop_nest);
>>
>> @@ -3659,7 +3824,7 @@ subscript_dependence_tester_1 (struct da
>>  subscript_dependence_tester (struct data_dependence_relation *ddr,
>>                              struct loop *loop_nest)
>>  {
>> -  if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), 
>> loop_nest))
>> +  if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
>>      dependence_stats.num_dependence_dependent++;
>>
>>    compute_subscript_distance (ddr);
>> Index: gcc/tree-ssa-loop-prefetch.c
>> ===================================================================
>> --- gcc/tree-ssa-loop-prefetch.c        2017-03-28 16:19:28.000000000 +0100
>> +++ gcc/tree-ssa-loop-prefetch.c        2017-05-03 08:48:48.737038502 +0100
>> @@ -1650,6 +1650,7 @@ determine_loop_nest_reuse (struct loop *
>>        refb = (struct mem_ref *) DDR_B (dep)->aux;
>>
>>        if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
>> +         || DDR_COULD_BE_INDEPENDENT_P (dep)
>>           || DDR_NUM_DIST_VECTS (dep) == 0)
>>         {
>>           /* If the dependence cannot be analyzed, assume that there might be
>> Index: gcc/tree-vectorizer.h
>> ===================================================================
>> --- gcc/tree-vectorizer.h       2017-03-28 16:19:28.000000000 +0100
>> +++ gcc/tree-vectorizer.h       2017-05-03 08:48:48.738045102 +0100
>> @@ -383,7 +383,7 @@ #define LOOP_VINFO_ORIG_LOOP_INFO(L)
>>  #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L)      \
>>    ((L)->may_misalign_stmts.length () > 0)
>>  #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L)          \
>> -  ((L)->may_alias_ddrs.length () > 0)
>> +  ((L)->comp_alias_ddrs.length () > 0)
>>  #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L)         \
>>    (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
>>  #define LOOP_REQUIRES_VERSIONING(L)                    \
>> Index: gcc/tree-vect-data-refs.c
>> ===================================================================
>> --- gcc/tree-vect-data-refs.c   2017-05-03 08:48:30.536704993 +0100
>> +++ gcc/tree-vect-data-refs.c   2017-05-03 08:48:48.738045102 +0100
>> @@ -340,6 +340,26 @@ vect_analyze_data_ref_dependence (struct
>>      }
>>
>>    loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
>> +
>> +  if (DDR_COULD_BE_INDEPENDENT_P (ddr))
>> +    /* For dependence distances of 2 or more, we have the option of
>> +       limiting VF or checking for an alias at runtime.  Prefer to check
>> +       at runtime if we can, to avoid limiting the VF unnecessarily when
>> +       the bases are in fact independent.
>> +
>> +       Note that the alias checks will be removed if the VF ends up
>> +       being small enough.  */
>> +    FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
>> +      {
>> +       int dist = dist_v[loop_depth];
>> +       if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
>> +         {
>> +           if (vect_mark_for_runtime_alias_test (ddr, loop_vinfo))
>> +             return false;
>> +           break;
>> +         }
>> +      }
>> +
>>    FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
>>      {
>>        int dist = dist_v[loop_depth];
>> @@ -3017,6 +3037,44 @@ vect_no_alias_p (struct data_reference *
>>    return false;
>>  }
>>
>> +/* Return true if the minimum nonzero dependence distance for loop 
>> LOOP_DEPTH
>> +   in DDR is >= VF.  */
>> +
>> +static bool
>> +dependence_distance_ge_vf (data_dependence_relation *ddr,
>> +                          unsigned int loop_depth, unsigned HOST_WIDE_INT 
>> vf)
>> +{
>> +  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
>> +      || DDR_NUM_DIST_VECTS (ddr) == 0)
>> +    return false;
>> +
>> +  /* If the dependence is exact, we should have limited the VF instead.  */
>> +  gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
>> +
>> +  unsigned int i;
>> +  lambda_vector dist_v;
>> +  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
>> +    {
>> +      HOST_WIDE_INT dist = dist_v[loop_depth];
>> +      if (dist != 0
>> +         && !(dist > 0 && DDR_REVERSED_P (ddr))
>> +         && (unsigned HOST_WIDE_INT) abs_hwi (dist) < vf)
>> +       return false;
>> +    }
>> +
>> +  if (dump_enabled_p ())
>> +    {
>> +      dump_printf_loc (MSG_NOTE, vect_location,
>> +                      "dependence distance between ");
>> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
>> +      dump_printf (MSG_NOTE,  " and ");
>> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
>> +      dump_printf (MSG_NOTE,  " is >= VF\n");
>> +    }
>> +
>> +  return true;
>> +}
>> +
>>  /* Function vect_prune_runtime_alias_test_list.
>>
>>     Prune a list of ddrs to be tested at run-time by versioning for alias.
>> @@ -3075,6 +3133,10 @@ vect_prune_runtime_alias_test_list (loop
>>
>>    comp_alias_ddrs.create (may_alias_ddrs.length ());
>>
>> +  unsigned int loop_depth
>> +    = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
>> +                         LOOP_VINFO_LOOP_NEST (loop_vinfo));
>> +
>>    /* First, we collect all data ref pairs for aliasing checks.  */
>>    FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
>>      {
>> @@ -3084,6 +3146,11 @@ vect_prune_runtime_alias_test_list (loop
>>        tree segment_length_a, segment_length_b;
>>        gimple *stmt_a, *stmt_b;
>>
>> +      /* Ignore the alias if the VF we chose ended up being no greater
>> +        than the dependence distance.  */
>> +      if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
>> +       continue;
>> +
>>        dr_a = DDR_A (ddr);
>>        stmt_a = DR_STMT (DDR_A (ddr));
>>        dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
>> @@ -3294,10 +3361,6 @@ vect_prune_runtime_alias_test_list (loop
>>        return false;
>>      }
>>
>> -  /* All alias checks have been resolved at compilation time.  */
>> -  if (!comp_alias_ddrs.length ())
>> -    LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
>> -
>>    return true;
>>  }
>>
>> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c
>> ===================================================================
>> --- /dev/null   2017-05-03 08:16:26.972699664 +0100
>> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c      2017-05-03 
>> 08:48:48.736031902 +0100
>> @@ -0,0 +1,104 @@
>> +/* { dg-do compile } */
>> +/* { dg-require-effective-target vect_int } */
>> +/* { dg-additional-options "--param vect-max-version-for-alias-checks=0" } 
>> */
>> +
>> +/* Intended to be larger than any VF.  */
>> +#define GAP 128
>> +#define N (GAP * 3)
>> +
>> +struct s { int x[N + 1]; };
>> +struct t { struct s x[N + 1]; };
>> +struct u { int x[N + 1]; int y; };
>> +
>> +void
>> +f1 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a->x[i] += b->x[i];
>> +}
>> +
>> +void
>> +f2 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a[1].x[i] += b[2].x[i];
>> +}
>> +
>> +void
>> +f3 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a[1].x[i] += b[i].x[i];
>> +}
>> +
>> +void
>> +f4 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a[i].x[i] += b[i].x[i];
>> +}
>> +
>> +void
>> +f5 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a->x[i] += b->x[i + 1];
>> +}
>> +
>> +void
>> +f6 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a[1].x[i] += b[2].x[i + 1];
>> +}
>> +
>> +void
>> +f7 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a[1].x[i] += b[i].x[i + 1];
>> +}
>> +
>> +void
>> +f8 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a[i].x[i] += b[i].x[i + 1];
>> +}
>> +
>> +void
>> +f9 (struct s *a, struct t *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a->x[i] += b->x[1].x[i];
>> +}
>> +
>> +void
>> +f10 (struct s *a, struct t *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a->x[i] += b->x[i].x[i];
>> +}
>> +
>> +void
>> +f11 (struct u *a, struct u *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a->x[i] += b->x[i] + b[i].y;
>> +}
>> +
>> +void
>> +f12 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < GAP; ++i)
>> +    a->x[i + GAP] += b->x[i];
>> +}
>> +
>> +void
>> +f13 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < GAP * 2; ++i)
>> +    a->x[i + GAP] += b->x[i];
>> +}
>> +
>> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 13 "vect" } } */
>> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c
>> ===================================================================
>> --- /dev/null   2017-05-03 08:16:26.972699664 +0100
>> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c      2017-05-03 
>> 08:48:48.736031902 +0100
>> @@ -0,0 +1,35 @@
>> +/* { dg-do compile } */
>> +/* { dg-require-effective-target vect_int } */
>> +/* { dg-additional-options "--param vect-max-version-for-alias-checks=0" } 
>> */
>> +
>> +#define N 16
>> +
>> +struct s1 { int a[N]; };
>> +struct s2 { struct s1 b; int c; };
>> +struct s3 { int d; struct s1 e; };
>> +union u { struct s2 f; struct s3 g; };
>> +
>> +/* We allow a and b to overlap arbitrarily.  */
>> +
>> +void
>> +f1 (int a[][N], int b[][N])
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a[0][i] += b[0][i];
>> +}
>> +
>> +void
>> +f2 (union u *a, union u *b)
>> +{
>> +  for (int i = 0; i < N; ++i)
>> +    a->f.b.a[i] += b->g.e.a[i];
>> +}
>> +
>> +void
>> +f3 (struct s1 *a, struct s1 *b)
>> +{
>> +  for (int i = 0; i < N - 1; ++i)
>> +    a->a[i + 1] += b->a[i];
>> +}
>> +
>> +/* { dg-final { scan-tree-dump-not "LOOP VECTORIZED" "vect" } } */
>> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c
>> ===================================================================
>> --- /dev/null   2017-05-03 08:16:26.972699664 +0100
>> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c      2017-05-03 
>> 08:48:48.736031902 +0100
>> @@ -0,0 +1,19 @@
>> +/* { dg-do compile } */
>> +/* { dg-require-effective-target vect_int } */
>> +
>> +/* Intended to be larger than any VF.  */
>> +#define GAP 128
>> +#define N (GAP * 3)
>> +
>> +struct s { int x[N]; };
>> +
>> +void
>> +f1 (struct s *a, struct s *b)
>> +{
>> +  for (int i = 0; i < GAP * 2; ++i)
>> +    a->x[i + GAP] += b->x[i];
>> +}
>> +
>> +/* { dg-final { scan-tree-dump-times "mark for run-time aliasing" 1 "vect" 
>> } } */
>> +/* { dg-final { scan-tree-dump-times "improved number of alias checks from 
>> 1 to 0" 1 "vect" } } */
>> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 1 "vect" } } */

Reply via email to