s-taprop.adb failed to compile for x32:

s-taprop.adb:341:29: operator for type "System.Linux.time_t" is not directly 
visible
s-taprop.adb:341:29: add with_clause and use_clause for "Linux"

which is caused by

2017-09-25  Doug Rupp  <r...@adacore.com>

        * libgnarl/s-taprop__linux.adb (Base_Monotonic_Clock): New variable.
        (Compute_Base_Monotonic_Clock): New function.
        (Timed_Sleep): Adjust to use Base_Monotonic_Clock.
        (Timed_Delay): Likewise.
        (Monotonic_Clock): Likewise.
        * s-oscons-tmplt.c (CLOCK_MONOTONIC): Use on Linux.

This patch adds and uses libgnarl/s-taprop__x32.adb for x32, which is
similar to libgnarl/s-taprop__linux.adb, but uses System.Linux.time_t.

OK for trunk?

H.J.
        * gcc-interface/Makefile.in: Replace libgnarl/s-taprop__linux.adb
        with libgnarl/s-taprop__x32.adb for x32.
        * libgnarl/s-taprop__x32.adb: New file.
---
 gcc/ada/gcc-interface/Makefile.in  |    2 +-
 gcc/ada/libgnarl/s-taprop__x32.adb | 1752 ++++++++++++++++++++++++++++++++++++
 2 files changed, 1753 insertions(+), 1 deletion(-)
 create mode 100644 gcc/ada/libgnarl/s-taprop__x32.adb

diff --git a/gcc/ada/gcc-interface/Makefile.in 
b/gcc/ada/gcc-interface/Makefile.in
index 2fa47caa547..d8899897481 100644
--- a/gcc/ada/gcc-interface/Makefile.in
+++ b/gcc/ada/gcc-interface/Makefile.in
@@ -1829,7 +1829,7 @@ ifeq ($(strip $(filter-out %x32 linux%,$(target_cpu) 
$(target_os))),)
   s-osinte.ads<libgnarl/s-osinte__linux.ads \
   s-osinte.adb<libgnarl/s-osinte__x32.adb \
   s-osprim.adb<libgnat/s-osprim__x32.adb \
-  s-taprop.adb<libgnarl/s-taprop__linux.adb \
+  s-taprop.adb<libgnarl/s-taprop__x32.adb \
   s-tasinf.ads<libgnarl/s-tasinf__linux.ads \
   s-tasinf.adb<libgnarl/s-tasinf__linux.adb \
   s-tpopsp.adb<libgnarl/s-tpopsp__tls.adb \
diff --git a/gcc/ada/libgnarl/s-taprop__x32.adb 
b/gcc/ada/libgnarl/s-taprop__x32.adb
new file mode 100644
index 00000000000..b958c8c3fa8
--- /dev/null
+++ b/gcc/ada/libgnarl/s-taprop__x32.adb
@@ -0,0 +1,1752 @@
+------------------------------------------------------------------------------
+--                                                                          --
+--                GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS               --
+--                                                                          --
+--     S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S    --
+--                                                                          --
+--                                  B o d y                                 --
+--                                                                          --
+--         Copyright (C) 2017, Free Software Foundation, Inc.               --
+--                                                                          --
+-- GNARL is free software; you can  redistribute it  and/or modify it under --
+-- terms of the  GNU General Public License as published  by the Free Soft- --
+-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
+-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
+-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
+-- or FITNESS FOR A PARTICULAR PURPOSE.                                     --
+--                                                                          --
+-- As a special exception under Section 7 of GPL version 3, you are granted --
+-- additional permissions described in the GCC Runtime Library Exception,   --
+-- version 3.1, as published by the Free Software Foundation.               --
+--                                                                          --
+-- You should have received a copy of the GNU General Public License and    --
+-- a copy of the GCC Runtime Library Exception along with this program;     --
+-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
+-- <http://www.gnu.org/licenses/>.                                          --
+--                                                                          --
+-- GNARL was developed by the GNARL team at Florida State University.       --
+-- Extensive contributions were provided by Ada Core Technologies, Inc.     --
+--                                                                          --
+------------------------------------------------------------------------------
+
+--  This is a GNU/Linux/x32 (GNU/LinuxThreads) version of this package
+
+--  This package contains all the GNULL primitives that interface directly with
+--  the underlying OS.
+
+pragma Polling (Off);
+--  Turn off polling, we do not want ATC polling to take place during tasking
+--  operations. It causes infinite loops and other problems.
+
+with Interfaces.C; use Interfaces;
+use type Interfaces.C.int;
+use type Interfaces.C.long;
+
+with System.Task_Info;
+with System.Tasking.Debug;
+with System.Interrupt_Management;
+with System.OS_Constants;
+with System.OS_Primitives;
+with System.Multiprocessors;
+with System.Linux;
+
+with System.Soft_Links;
+--  We use System.Soft_Links instead of System.Tasking.Initialization
+--  because the later is a higher level package that we shouldn't depend on.
+--  For example when using the restricted run time, it is replaced by
+--  System.Tasking.Restricted.Stages.
+
+package body System.Task_Primitives.Operations is
+
+   package OSC renames System.OS_Constants;
+   package SSL renames System.Soft_Links;
+
+   use System.Tasking.Debug;
+   use System.Tasking;
+   use System.OS_Interface;
+   use System.Parameters;
+   use System.OS_Primitives;
+   use System.Task_Info;
+
+   ----------------
+   -- Local Data --
+   ----------------
+
+   --  The followings are logically constants, but need to be initialized
+   --  at run time.
+
+   Single_RTS_Lock : aliased RTS_Lock;
+   --  This is a lock to allow only one thread of control in the RTS at
+   --  a time; it is used to execute in mutual exclusion from all other tasks.
+   --  Used mainly in Single_Lock mode, but also to protect All_Tasks_List
+
+   Environment_Task_Id : Task_Id;
+   --  A variable to hold Task_Id for the environment task
+
+   Unblocked_Signal_Mask : aliased sigset_t;
+   --  The set of signals that should be unblocked in all tasks
+
+   --  The followings are internal configuration constants needed
+
+   Next_Serial_Number : Task_Serial_Number := 100;
+   --  We start at 100 (reserve some special values for using in error checks)
+
+   Time_Slice_Val : Integer;
+   pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
+
+   Dispatching_Policy : Character;
+   pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
+
+   Locking_Policy : Character;
+   pragma Import (C, Locking_Policy, "__gl_locking_policy");
+
+   Foreign_Task_Elaborated : aliased Boolean := True;
+   --  Used to identified fake tasks (i.e., non-Ada Threads)
+
+   Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
+   --  Whether to use an alternate signal stack for stack overflows
+
+   Abort_Handler_Installed : Boolean := False;
+   --  True if a handler for the abort signal is installed
+
+   Null_Thread_Id : constant pthread_t := pthread_t'Last;
+   --  Constant to indicate that the thread identifier has not yet been
+   --  initialized.
+
+   Base_Monotonic_Clock : Duration := 0.0;
+
+   --------------------
+   -- Local Packages --
+   --------------------
+
+   package Specific is
+
+      procedure Initialize (Environment_Task : Task_Id);
+      pragma Inline (Initialize);
+      --  Initialize various data needed by this package
+
+      function Is_Valid_Task return Boolean;
+      pragma Inline (Is_Valid_Task);
+      --  Does executing thread have a TCB?
+
+      procedure Set (Self_Id : Task_Id);
+      pragma Inline (Set);
+      --  Set the self id for the current task
+
+      function Self return Task_Id;
+      pragma Inline (Self);
+      --  Return a pointer to the Ada Task Control Block of the calling task
+
+   end Specific;
+
+   package body Specific is separate;
+   --  The body of this package is target specific
+
+   ----------------------------------
+   -- ATCB allocation/deallocation --
+   ----------------------------------
+
+   package body ATCB_Allocation is separate;
+   --  The body of this package is shared across several targets
+
+   ---------------------------------
+   -- Support for foreign threads --
+   ---------------------------------
+
+   function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
+   --  Allocate and Initialize a new ATCB for the current Thread
+
+   function Register_Foreign_Thread
+     (Thread : Thread_Id) return Task_Id is separate;
+
+   -----------------------
+   -- Local Subprograms --
+   -----------------------
+
+   procedure Abort_Handler (signo : Signal);
+
+   function Compute_Base_Monotonic_Clock return Duration;
+   --  The monotonic clock epoch is set to some undetermined time in the past
+   --  (typically system boot time). In order to use the monotonic clock for
+   --  absolute time, the offset from a known epoch is needed.
+
+   function GNAT_pthread_condattr_setup
+     (attr : access pthread_condattr_t) return C.int;
+   pragma Import
+     (C, GNAT_pthread_condattr_setup, "__gnat_pthread_condattr_setup");
+
+   function GNAT_has_cap_sys_nice return C.int;
+   pragma Import
+     (C, GNAT_has_cap_sys_nice, "__gnat_has_cap_sys_nice");
+   --  We do not have pragma Linker_Options ("-lcap"); here, because this
+   --  library is not present on many Linux systems. 'libcap' is the Linux
+   --  "capabilities" library, called by __gnat_has_cap_sys_nice.
+
+   function Prio_To_Linux_Prio (Prio : Any_Priority) return C.int is
+     (C.int (Prio) + 1);
+   --  Convert Ada priority to Linux priority. Priorities are 1 .. 99 on
+   --  GNU/Linux, so we map 0 .. 98 to 1 .. 99.
+
+   function Get_Ceiling_Support return Boolean;
+   --  Get the value of the Ceiling_Support constant (see below).
+   --  Note well: If this function or related code is modified, it should be
+   --  tested by hand, because automated testing doesn't exercise it.
+
+   -------------------------
+   -- Get_Ceiling_Support --
+   -------------------------
+
+   function Get_Ceiling_Support return Boolean is
+      Ceiling_Support : Boolean := False;
+   begin
+      if Locking_Policy /= 'C' then
+         return False;
+      end if;
+
+      declare
+         function geteuid return Integer;
+         pragma Import (C, geteuid, "geteuid");
+         Superuser : constant Boolean := geteuid = 0;
+         Has_Cap : constant C.int := GNAT_has_cap_sys_nice;
+         pragma Assert (Has_Cap in 0 | 1);
+      begin
+         Ceiling_Support := Superuser or else Has_Cap = 1;
+      end;
+
+      return Ceiling_Support;
+   end Get_Ceiling_Support;
+
+   pragma Warnings (Off, "non-static call not allowed in preelaborated unit");
+   Ceiling_Support : constant Boolean := Get_Ceiling_Support;
+   pragma Warnings (On, "non-static call not allowed in preelaborated unit");
+   --  True if the locking policy is Ceiling_Locking, and the current process
+   --  has permission to use this policy. The process has permission if it is
+   --  running as 'root', or if the capability was set by the setcap command,
+   --  as in "sudo /sbin/setcap cap_sys_nice=ep exe_file". If it doesn't have
+   --  permission, then a request for Ceiling_Locking is ignored.
+
+   type RTS_Lock_Ptr is not null access all RTS_Lock;
+
+   function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int;
+   --  Initialize the mutex L. If Ceiling_Support is True, then set the ceiling
+   --  to Prio. Returns 0 for success, or ENOMEM for out-of-memory.
+
+   -------------------
+   -- Abort_Handler --
+   -------------------
+
+   procedure Abort_Handler (signo : Signal) is
+      pragma Unreferenced (signo);
+
+      Self_Id : constant Task_Id := Self;
+      Result  : C.int;
+      Old_Set : aliased sigset_t;
+
+   begin
+      --  It's not safe to raise an exception when using GCC ZCX mechanism.
+      --  Note that we still need to install a signal handler, since in some
+      --  cases (e.g. shutdown of the Server_Task in System.Interrupts) we
+      --  need to send the Abort signal to a task.
+
+      if ZCX_By_Default then
+         return;
+      end if;
+
+      if Self_Id.Deferral_Level = 0
+        and then Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level
+        and then not Self_Id.Aborting
+      then
+         Self_Id.Aborting := True;
+
+         --  Make sure signals used for RTS internal purpose are unmasked
+
+         Result :=
+           pthread_sigmask
+             (SIG_UNBLOCK,
+              Unblocked_Signal_Mask'Access,
+              Old_Set'Access);
+         pragma Assert (Result = 0);
+
+         raise Standard'Abort_Signal;
+      end if;
+   end Abort_Handler;
+
+   ----------------------------------
+   -- Compute_Base_Monotonic_Clock --
+   ----------------------------------
+
+   function Compute_Base_Monotonic_Clock return Duration is
+      Aft     : Duration;
+      Bef     : Duration;
+      Mon     : Duration;
+      Res_A   : Interfaces.C.int;
+      Res_B   : Interfaces.C.int;
+      Res_M   : Interfaces.C.int;
+      TS_Aft  : aliased timespec;
+      TS_Aft0 : aliased timespec;
+      TS_Bef  : aliased timespec;
+      TS_Bef0 : aliased timespec;
+      TS_Mon  : aliased timespec;
+      TS_Mon0 : aliased timespec;
+
+      use type System.Linux.time_t;
+   begin
+      Res_B :=
+        clock_gettime
+          (clock_id => OSC.CLOCK_REALTIME,
+           tp       => TS_Bef0'Unchecked_Access);
+      pragma Assert (Res_B = 0);
+
+      Res_M :=
+        clock_gettime
+          (clock_id => OSC.CLOCK_RT_Ada,
+           tp       => TS_Mon0'Unchecked_Access);
+      pragma Assert (Res_M = 0);
+
+      Res_A :=
+        clock_gettime
+          (clock_id => OSC.CLOCK_REALTIME,
+           tp       => TS_Aft0'Unchecked_Access);
+      pragma Assert (Res_A = 0);
+
+      for I in 1 .. 10 loop
+
+         --  Guard against a leap second that will cause CLOCK_REALTIME to jump
+         --  backwards. In the extrenmely unlikely event we call clock_gettime
+         --  before and after the jump the epoch, the result will be off
+         --  slightly.
+         --  Use only results where the tv_sec values match, for the sake of
+         --  convenience.
+         --  Also try to calculate the most accurate epoch by taking the
+         --  minimum difference of 10 tries.
+
+         Res_B :=
+           clock_gettime
+             (clock_id => OSC.CLOCK_REALTIME,
+              tp       => TS_Bef'Unchecked_Access);
+         pragma Assert (Res_B = 0);
+
+         Res_M :=
+           clock_gettime
+             (clock_id => OSC.CLOCK_RT_Ada,
+              tp       => TS_Mon'Unchecked_Access);
+         pragma Assert (Res_M = 0);
+
+         Res_A :=
+           clock_gettime
+             (clock_id => OSC.CLOCK_REALTIME,
+              tp       => TS_Aft'Unchecked_Access);
+         pragma Assert (Res_A = 0);
+
+         --  The calls to clock_gettime before the loop were no good
+
+         if (TS_Bef0.tv_sec /= TS_Aft0.tv_sec
+               and then TS_Bef.tv_sec  = TS_Aft.tv_sec)
+
+           --  The most recent calls to clock_gettime were better
+
+           or else
+             (TS_Bef0.tv_sec = TS_Aft0.tv_sec
+                and then TS_Bef.tv_sec = TS_Aft.tv_sec
+                and then (TS_Aft.tv_nsec - TS_Bef.tv_nsec
+                            < TS_Aft0.tv_nsec - TS_Bef0.tv_nsec))
+         then
+            TS_Bef0 := TS_Bef;
+            TS_Aft0 := TS_Aft;
+            TS_Mon0 := TS_Mon;
+         end if;
+      end loop;
+
+      Bef := To_Duration (TS_Bef0);
+      Mon := To_Duration (TS_Mon0);
+      Aft := To_Duration (TS_Aft0);
+
+      --  Distribute the division, to avoid potential type overflow someday
+
+      return Bef / 2 + Aft / 2 - Mon;
+   end Compute_Base_Monotonic_Clock;
+
+   --------------
+   -- Lock_RTS --
+   --------------
+
+   procedure Lock_RTS is
+   begin
+      Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
+   end Lock_RTS;
+
+   ----------------
+   -- Unlock_RTS --
+   ----------------
+
+   procedure Unlock_RTS is
+   begin
+      Unlock (Single_RTS_Lock'Access, Global_Lock => True);
+   end Unlock_RTS;
+
+   -----------------
+   -- Stack_Guard --
+   -----------------
+
+   --  The underlying thread system extends the memory (up to 2MB) when needed
+
+   procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
+      pragma Unreferenced (T);
+      pragma Unreferenced (On);
+   begin
+      null;
+   end Stack_Guard;
+
+   --------------------
+   -- Get_Thread_Id  --
+   --------------------
+
+   function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
+   begin
+      return T.Common.LL.Thread;
+   end Get_Thread_Id;
+
+   ----------
+   -- Self --
+   ----------
+
+   function Self return Task_Id renames Specific.Self;
+
+   ----------------
+   -- Init_Mutex --
+   ----------------
+
+   function Init_Mutex (L : RTS_Lock_Ptr; Prio : Any_Priority) return C.int is
+      Mutex_Attr : aliased pthread_mutexattr_t;
+      Result, Result_2 : C.int;
+
+   begin
+      Result := pthread_mutexattr_init (Mutex_Attr'Access);
+      pragma Assert (Result in 0 | ENOMEM);
+
+      if Result = ENOMEM then
+         return Result;
+      end if;
+
+      if Ceiling_Support then
+         Result := pthread_mutexattr_setprotocol
+           (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
+         pragma Assert (Result = 0);
+
+         Result := pthread_mutexattr_setprioceiling
+           (Mutex_Attr'Access, Prio_To_Linux_Prio (Prio));
+         pragma Assert (Result = 0);
+
+      elsif Locking_Policy = 'I' then
+         Result := pthread_mutexattr_setprotocol
+           (Mutex_Attr'Access, PTHREAD_PRIO_INHERIT);
+         pragma Assert (Result = 0);
+      end if;
+
+      Result := pthread_mutex_init (L, Mutex_Attr'Access);
+      pragma Assert (Result in 0 | ENOMEM);
+
+      Result_2 := pthread_mutexattr_destroy (Mutex_Attr'Access);
+      pragma Assert (Result_2 = 0);
+      return Result; -- of pthread_mutex_init, not pthread_mutexattr_destroy
+   end Init_Mutex;
+
+   ---------------------
+   -- Initialize_Lock --
+   ---------------------
+
+   --  Note: mutexes and cond_variables needed per-task basis are initialized
+   --  in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
+   --  as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
+   --  status change of RTS. Therefore raising Storage_Error in the following
+   --  routines should be able to be handled safely.
+
+   procedure Initialize_Lock
+     (Prio : Any_Priority;
+      L    : not null access Lock)
+   is
+   begin
+      if Locking_Policy = 'R' then
+         declare
+            RWlock_Attr : aliased pthread_rwlockattr_t;
+            Result      : C.int;
+
+         begin
+            --  Set the rwlock to prefer writer to avoid writers starvation
+
+            Result := pthread_rwlockattr_init (RWlock_Attr'Access);
+            pragma Assert (Result = 0);
+
+            Result := pthread_rwlockattr_setkind_np
+              (RWlock_Attr'Access,
+               PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
+            pragma Assert (Result = 0);
+
+            Result := pthread_rwlock_init (L.RW'Access, RWlock_Attr'Access);
+
+            pragma Assert (Result in 0 | ENOMEM);
+
+            if Result = ENOMEM then
+               raise Storage_Error with "Failed to allocate a lock";
+            end if;
+         end;
+
+      else
+         if Init_Mutex (L.WO'Access, Prio) = ENOMEM then
+            raise Storage_Error with "Failed to allocate a lock";
+         end if;
+      end if;
+   end Initialize_Lock;
+
+   procedure Initialize_Lock
+     (L : not null access RTS_Lock; Level : Lock_Level)
+   is
+      pragma Unreferenced (Level);
+   begin
+      if Init_Mutex (L.all'Access, Any_Priority'Last) = ENOMEM then
+         raise Storage_Error with "Failed to allocate a lock";
+      end if;
+   end Initialize_Lock;
+
+   -------------------
+   -- Finalize_Lock --
+   -------------------
+
+   procedure Finalize_Lock (L : not null access Lock) is
+      Result : C.int;
+   begin
+      if Locking_Policy = 'R' then
+         Result := pthread_rwlock_destroy (L.RW'Access);
+      else
+         Result := pthread_mutex_destroy (L.WO'Access);
+      end if;
+      pragma Assert (Result = 0);
+   end Finalize_Lock;
+
+   procedure Finalize_Lock (L : not null access RTS_Lock) is
+      Result : C.int;
+   begin
+      Result := pthread_mutex_destroy (L);
+      pragma Assert (Result = 0);
+   end Finalize_Lock;
+
+   ----------------
+   -- Write_Lock --
+   ----------------
+
+   procedure Write_Lock
+     (L                 : not null access Lock;
+      Ceiling_Violation : out Boolean)
+   is
+      Result : C.int;
+   begin
+      if Locking_Policy = 'R' then
+         Result := pthread_rwlock_wrlock (L.RW'Access);
+      else
+         Result := pthread_mutex_lock (L.WO'Access);
+      end if;
+
+      --  The cause of EINVAL is a priority ceiling violation
+
+      pragma Assert (Result in 0 | EINVAL);
+      Ceiling_Violation := Result = EINVAL;
+   end Write_Lock;
+
+   procedure Write_Lock
+     (L           : not null access RTS_Lock;
+      Global_Lock : Boolean := False)
+   is
+      Result : C.int;
+   begin
+      if not Single_Lock or else Global_Lock then
+         Result := pthread_mutex_lock (L);
+         pragma Assert (Result = 0);
+      end if;
+   end Write_Lock;
+
+   procedure Write_Lock (T : Task_Id) is
+      Result : C.int;
+   begin
+      if not Single_Lock then
+         Result := pthread_mutex_lock (T.Common.LL.L'Access);
+         pragma Assert (Result = 0);
+      end if;
+   end Write_Lock;
+
+   ---------------
+   -- Read_Lock --
+   ---------------
+
+   procedure Read_Lock
+     (L                 : not null access Lock;
+      Ceiling_Violation : out Boolean)
+   is
+      Result : C.int;
+   begin
+      if Locking_Policy = 'R' then
+         Result := pthread_rwlock_rdlock (L.RW'Access);
+      else
+         Result := pthread_mutex_lock (L.WO'Access);
+      end if;
+
+      --  The cause of EINVAL is a priority ceiling violation
+
+      pragma Assert (Result in 0 | EINVAL);
+      Ceiling_Violation := Result = EINVAL;
+   end Read_Lock;
+
+   ------------
+   -- Unlock --
+   ------------
+
+   procedure Unlock (L : not null access Lock) is
+      Result : C.int;
+   begin
+      if Locking_Policy = 'R' then
+         Result := pthread_rwlock_unlock (L.RW'Access);
+      else
+         Result := pthread_mutex_unlock (L.WO'Access);
+      end if;
+      pragma Assert (Result = 0);
+   end Unlock;
+
+   procedure Unlock
+     (L           : not null access RTS_Lock;
+      Global_Lock : Boolean := False)
+   is
+      Result : C.int;
+   begin
+      if not Single_Lock or else Global_Lock then
+         Result := pthread_mutex_unlock (L);
+         pragma Assert (Result = 0);
+      end if;
+   end Unlock;
+
+   procedure Unlock (T : Task_Id) is
+      Result : C.int;
+   begin
+      if not Single_Lock then
+         Result := pthread_mutex_unlock (T.Common.LL.L'Access);
+         pragma Assert (Result = 0);
+      end if;
+   end Unlock;
+
+   -----------------
+   -- Set_Ceiling --
+   -----------------
+
+   --  Dynamic priority ceilings are not supported by the underlying system
+
+   procedure Set_Ceiling
+     (L    : not null access Lock;
+      Prio : Any_Priority)
+   is
+      pragma Unreferenced (L, Prio);
+   begin
+      null;
+   end Set_Ceiling;
+
+   -----------
+   -- Sleep --
+   -----------
+
+   procedure Sleep
+     (Self_ID  : Task_Id;
+      Reason   : System.Tasking.Task_States)
+   is
+      pragma Unreferenced (Reason);
+
+      Result : C.int;
+
+   begin
+      pragma Assert (Self_ID = Self);
+
+      Result :=
+        pthread_cond_wait
+          (cond  => Self_ID.Common.LL.CV'Access,
+           mutex => (if Single_Lock
+                     then Single_RTS_Lock'Access
+                     else Self_ID.Common.LL.L'Access));
+
+      --  EINTR is not considered a failure
+
+      pragma Assert (Result in 0 | EINTR);
+   end Sleep;
+
+   -----------------
+   -- Timed_Sleep --
+   -----------------
+
+   --  This is for use within the run-time system, so abort is
+   --  assumed to be already deferred, and the caller should be
+   --  holding its own ATCB lock.
+
+   procedure Timed_Sleep
+     (Self_ID  : Task_Id;
+      Time     : Duration;
+      Mode     : ST.Delay_Modes;
+      Reason   : System.Tasking.Task_States;
+      Timedout : out Boolean;
+      Yielded  : out Boolean)
+   is
+      pragma Unreferenced (Reason);
+
+      Base_Time  : constant Duration := Monotonic_Clock;
+      Check_Time : Duration := Base_Time - Base_Monotonic_Clock;
+      Abs_Time   : Duration;
+      Request    : aliased timespec;
+      Result     : C.int;
+
+   begin
+      Timedout := True;
+      Yielded := False;
+
+      Abs_Time :=
+        (if Mode = Relative
+         then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
+         else Duration'Min (Check_Time + Max_Sensible_Delay,
+                            Time - Base_Monotonic_Clock));
+
+      if Abs_Time > Check_Time then
+         Request := To_Timespec (Abs_Time);
+
+         loop
+            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+            Result :=
+              pthread_cond_timedwait
+                (cond    => Self_ID.Common.LL.CV'Access,
+                 mutex   => (if Single_Lock
+                             then Single_RTS_Lock'Access
+                             else Self_ID.Common.LL.L'Access),
+                 abstime => Request'Access);
+
+            Check_Time := Monotonic_Clock;
+            exit when Abs_Time + Base_Monotonic_Clock <= Check_Time
+                      or else Check_Time < Base_Time;
+
+            if Result in 0 | EINTR then
+
+               --  Somebody may have called Wakeup for us
+
+               Timedout := False;
+               exit;
+            end if;
+
+            pragma Assert (Result = ETIMEDOUT);
+         end loop;
+      end if;
+   end Timed_Sleep;
+
+   -----------------
+   -- Timed_Delay --
+   -----------------
+
+   --  This is for use in implementing delay statements, so we assume the
+   --  caller is abort-deferred but is holding no locks.
+
+   procedure Timed_Delay
+     (Self_ID : Task_Id;
+      Time    : Duration;
+      Mode    : ST.Delay_Modes)
+   is
+      Base_Time  : constant Duration := Monotonic_Clock;
+      Check_Time : Duration := Base_Time - Base_Monotonic_Clock;
+      Abs_Time   : Duration;
+      Request    : aliased timespec;
+
+      Result : C.int;
+      pragma Warnings (Off, Result);
+
+   begin
+      if Single_Lock then
+         Lock_RTS;
+      end if;
+
+      Write_Lock (Self_ID);
+
+      Abs_Time :=
+        (if Mode = Relative
+         then Time + Check_Time
+         else Duration'Min (Check_Time + Max_Sensible_Delay,
+                            Time - Base_Monotonic_Clock));
+
+      if Abs_Time > Check_Time then
+         Request := To_Timespec (Abs_Time);
+         Self_ID.Common.State := Delay_Sleep;
+
+         loop
+            exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
+
+            Result :=
+              pthread_cond_timedwait
+                (cond    => Self_ID.Common.LL.CV'Access,
+                 mutex   => (if Single_Lock
+                             then Single_RTS_Lock'Access
+                             else Self_ID.Common.LL.L'Access),
+                 abstime => Request'Access);
+
+            Check_Time := Monotonic_Clock;
+            exit when Abs_Time + Base_Monotonic_Clock <= Check_Time
+                      or else Check_Time < Base_Time;
+
+            pragma Assert (Result in 0 | ETIMEDOUT | EINTR);
+         end loop;
+
+         Self_ID.Common.State := Runnable;
+      end if;
+
+      Unlock (Self_ID);
+
+      if Single_Lock then
+         Unlock_RTS;
+      end if;
+
+      Result := sched_yield;
+   end Timed_Delay;
+
+   ---------------------
+   -- Monotonic_Clock --
+   ---------------------
+
+   function Monotonic_Clock return Duration is
+      TS     : aliased timespec;
+      Result : Interfaces.C.int;
+   begin
+      Result := clock_gettime
+        (clock_id => OSC.CLOCK_RT_Ada, tp => TS'Unchecked_Access);
+      pragma Assert (Result = 0);
+
+      return Base_Monotonic_Clock + To_Duration (TS);
+   end Monotonic_Clock;
+
+   -------------------
+   -- RT_Resolution --
+   -------------------
+
+   function RT_Resolution return Duration is
+      TS     : aliased timespec;
+      Result : C.int;
+
+   begin
+      Result := clock_getres (OSC.CLOCK_REALTIME, TS'Unchecked_Access);
+      pragma Assert (Result = 0);
+
+      return To_Duration (TS);
+   end RT_Resolution;
+
+   ------------
+   -- Wakeup --
+   ------------
+
+   procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
+      pragma Unreferenced (Reason);
+      Result : C.int;
+   begin
+      Result := pthread_cond_signal (T.Common.LL.CV'Access);
+      pragma Assert (Result = 0);
+   end Wakeup;
+
+   -----------
+   -- Yield --
+   -----------
+
+   procedure Yield (Do_Yield : Boolean := True) is
+      Result : C.int;
+      pragma Unreferenced (Result);
+   begin
+      if Do_Yield then
+         Result := sched_yield;
+      end if;
+   end Yield;
+
+   ------------------
+   -- Set_Priority --
+   ------------------
+
+   procedure Set_Priority
+     (T                   : Task_Id;
+      Prio                : Any_Priority;
+      Loss_Of_Inheritance : Boolean := False)
+   is
+      pragma Unreferenced (Loss_Of_Inheritance);
+
+      Result : C.int;
+      Param  : aliased struct_sched_param;
+
+      function Get_Policy (Prio : Any_Priority) return Character;
+      pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
+      --  Get priority specific dispatching policy
+
+      Priority_Specific_Policy : constant Character := Get_Policy (Prio);
+      --  Upper case first character of the policy name corresponding to the
+      --  task as set by a Priority_Specific_Dispatching pragma.
+
+   begin
+      T.Common.Current_Priority := Prio;
+
+      Param.sched_priority := Prio_To_Linux_Prio (Prio);
+
+      if Dispatching_Policy = 'R'
+        or else Priority_Specific_Policy = 'R'
+        or else Time_Slice_Val > 0
+      then
+         Result :=
+           pthread_setschedparam
+             (T.Common.LL.Thread, SCHED_RR, Param'Access);
+
+      elsif Dispatching_Policy = 'F'
+        or else Priority_Specific_Policy = 'F'
+        or else Time_Slice_Val = 0
+      then
+         Result :=
+           pthread_setschedparam
+             (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
+
+      else
+         Param.sched_priority := 0;
+         Result :=
+           pthread_setschedparam
+             (T.Common.LL.Thread,
+              SCHED_OTHER, Param'Access);
+      end if;
+
+      pragma Assert (Result in 0 | EPERM | EINVAL);
+   end Set_Priority;
+
+   ------------------
+   -- Get_Priority --
+   ------------------
+
+   function Get_Priority (T : Task_Id) return Any_Priority is
+   begin
+      return T.Common.Current_Priority;
+   end Get_Priority;
+
+   ----------------
+   -- Enter_Task --
+   ----------------
+
+   procedure Enter_Task (Self_ID : Task_Id) is
+   begin
+      if Self_ID.Common.Task_Info /= null
+        and then Self_ID.Common.Task_Info.CPU_Affinity = No_CPU
+      then
+         raise Invalid_CPU_Number;
+      end if;
+
+      Self_ID.Common.LL.Thread := pthread_self;
+      Self_ID.Common.LL.LWP := lwp_self;
+
+      --  Set thread name to ease debugging. If the name of the task is
+      --  "foreign thread" (as set by Register_Foreign_Thread) retrieve
+      --  the name of the thread and update the name of the task instead.
+
+      if Self_ID.Common.Task_Image_Len = 14
+        and then Self_ID.Common.Task_Image (1 .. 14) = "foreign thread"
+      then
+         declare
+            Thread_Name : String (1 .. 16);
+            --  PR_GET_NAME returns a string of up to 16 bytes
+
+            Len    : Natural := 0;
+            --  Length of the task name contained in Task_Name
+
+            Result : C.int;
+            --  Result from the prctl call
+         begin
+            Result := prctl (PR_GET_NAME, unsigned_long (Thread_Name'Address));
+            pragma Assert (Result = 0);
+
+            --  Find the length of the given name
+
+            for J in Thread_Name'Range loop
+               if Thread_Name (J) /= ASCII.NUL then
+                  Len := Len + 1;
+               else
+                  exit;
+               end if;
+            end loop;
+
+            --  Cover the odd situation where someone decides to change
+            --  Parameters.Max_Task_Image_Length to less than 16 characters.
+
+            if Len > Parameters.Max_Task_Image_Length then
+               Len := Parameters.Max_Task_Image_Length;
+            end if;
+
+            --  Copy the name of the thread to the task's ATCB
+
+            Self_ID.Common.Task_Image (1 .. Len) := Thread_Name (1 .. Len);
+            Self_ID.Common.Task_Image_Len := Len;
+         end;
+
+      elsif Self_ID.Common.Task_Image_Len > 0 then
+         declare
+            Task_Name : String (1 .. Parameters.Max_Task_Image_Length + 1);
+            Result    : C.int;
+
+         begin
+            Task_Name (1 .. Self_ID.Common.Task_Image_Len) :=
+              Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len);
+            Task_Name (Self_ID.Common.Task_Image_Len + 1) := ASCII.NUL;
+
+            Result := prctl (PR_SET_NAME, unsigned_long (Task_Name'Address));
+            pragma Assert (Result = 0);
+         end;
+      end if;
+
+      Specific.Set (Self_ID);
+
+      if Use_Alternate_Stack
+        and then Self_ID.Common.Task_Alternate_Stack /= Null_Address
+      then
+         declare
+            Stack  : aliased stack_t;
+            Result : C.int;
+         begin
+            Stack.ss_sp    := Self_ID.Common.Task_Alternate_Stack;
+            Stack.ss_size  := Alternate_Stack_Size;
+            Stack.ss_flags := 0;
+            Result := sigaltstack (Stack'Access, null);
+            pragma Assert (Result = 0);
+         end;
+      end if;
+   end Enter_Task;
+
+   -------------------
+   -- Is_Valid_Task --
+   -------------------
+
+   function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
+
+   -----------------------------
+   -- Register_Foreign_Thread --
+   -----------------------------
+
+   function Register_Foreign_Thread return Task_Id is
+   begin
+      if Is_Valid_Task then
+         return Self;
+      else
+         return Register_Foreign_Thread (pthread_self);
+      end if;
+   end Register_Foreign_Thread;
+
+   --------------------
+   -- Initialize_TCB --
+   --------------------
+
+   procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
+      Result    : C.int;
+      Cond_Attr : aliased pthread_condattr_t;
+
+   begin
+      --  Give the task a unique serial number
+
+      Self_ID.Serial_Number := Next_Serial_Number;
+      Next_Serial_Number := Next_Serial_Number + 1;
+      pragma Assert (Next_Serial_Number /= 0);
+
+      Self_ID.Common.LL.Thread := Null_Thread_Id;
+
+      if not Single_Lock then
+         if Init_Mutex
+           (Self_ID.Common.LL.L'Access, Any_Priority'Last) /= 0
+         then
+            Succeeded := False;
+            return;
+         end if;
+      end if;
+
+      Result := pthread_condattr_init (Cond_Attr'Access);
+      pragma Assert (Result in 0 | ENOMEM);
+
+      if Result = 0 then
+         Result := GNAT_pthread_condattr_setup (Cond_Attr'Access);
+         pragma Assert (Result = 0);
+
+         Result :=
+           pthread_cond_init
+             (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
+         pragma Assert (Result in 0 | ENOMEM);
+      end if;
+
+      if Result = 0 then
+         Succeeded := True;
+      else
+         if not Single_Lock then
+            Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
+            pragma Assert (Result = 0);
+         end if;
+
+         Succeeded := False;
+      end if;
+
+      Result := pthread_condattr_destroy (Cond_Attr'Access);
+      pragma Assert (Result = 0);
+   end Initialize_TCB;
+
+   -----------------
+   -- Create_Task --
+   -----------------
+
+   procedure Create_Task
+     (T          : Task_Id;
+      Wrapper    : System.Address;
+      Stack_Size : System.Parameters.Size_Type;
+      Priority   : Any_Priority;
+      Succeeded  : out Boolean)
+   is
+      Thread_Attr         : aliased pthread_attr_t;
+      Adjusted_Stack_Size : C.size_t;
+      Result              : C.int;
+
+      use type Multiprocessors.CPU_Range, Interfaces.C.size_t;
+
+   begin
+      --  Check whether both Dispatching_Domain and CPU are specified for
+      --  the task, and the CPU value is not contained within the range of
+      --  processors for the domain.
+
+      if T.Common.Domain /= null
+        and then T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU
+        and then
+          (T.Common.Base_CPU not in T.Common.Domain'Range
+            or else not T.Common.Domain (T.Common.Base_CPU))
+      then
+         Succeeded := False;
+         return;
+      end if;
+
+      Adjusted_Stack_Size := C.size_t (Stack_Size + Alternate_Stack_Size);
+
+      Result := pthread_attr_init (Thread_Attr'Access);
+      pragma Assert (Result in 0 | ENOMEM);
+
+      if Result /= 0 then
+         Succeeded := False;
+         return;
+      end if;
+
+      Result :=
+        pthread_attr_setstacksize (Thread_Attr'Access, Adjusted_Stack_Size);
+      pragma Assert (Result = 0);
+
+      Result :=
+        pthread_attr_setdetachstate
+          (Thread_Attr'Access, PTHREAD_CREATE_DETACHED);
+      pragma Assert (Result = 0);
+
+      --  Set the required attributes for the creation of the thread
+
+      --  Note: Previously, we called pthread_setaffinity_np (after thread
+      --  creation but before thread activation) to set the affinity but it was
+      --  not behaving as expected. Setting the required attributes for the
+      --  creation of the thread works correctly and it is more appropriate.
+
+      --  Do nothing if required support not provided by the operating system
+
+      if pthread_attr_setaffinity_np'Address = Null_Address then
+         null;
+
+      --  Support is available
+
+      elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
+         declare
+            CPUs    : constant size_t :=
+                        C.size_t (Multiprocessors.Number_Of_CPUs);
+            CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
+            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);
+
+         begin
+            CPU_ZERO (Size, CPU_Set);
+            System.OS_Interface.CPU_SET
+              (int (T.Common.Base_CPU), Size, CPU_Set);
+            Result :=
+              pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
+            pragma Assert (Result = 0);
+
+            CPU_FREE (CPU_Set);
+         end;
+
+      --  Handle Task_Info
+
+      elsif T.Common.Task_Info /= null then
+         Result :=
+           pthread_attr_setaffinity_np
+             (Thread_Attr'Access,
+              CPU_SETSIZE / 8,
+              T.Common.Task_Info.CPU_Affinity'Access);
+         pragma Assert (Result = 0);
+
+      --  Handle dispatching domains
+
+      --  To avoid changing CPU affinities when not needed, we set the
+      --  affinity only when assigning to a domain other than the default
+      --  one, or when the default one has been modified.
+
+      elsif T.Common.Domain /= null and then
+        (T.Common.Domain /= ST.System_Domain
+          or else T.Common.Domain.all /=
+                    (Multiprocessors.CPU'First ..
+                     Multiprocessors.Number_Of_CPUs => True))
+      then
+         declare
+            CPUs    : constant size_t :=
+                        C.size_t (Multiprocessors.Number_Of_CPUs);
+            CPU_Set : constant cpu_set_t_ptr := CPU_ALLOC (CPUs);
+            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);
+
+         begin
+            CPU_ZERO (Size, CPU_Set);
+
+            --  Set the affinity to all the processors belonging to the
+            --  dispatching domain.
+
+            for Proc in T.Common.Domain'Range loop
+               if T.Common.Domain (Proc) then
+                  System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
+               end if;
+            end loop;
+
+            Result :=
+              pthread_attr_setaffinity_np (Thread_Attr'Access, Size, CPU_Set);
+            pragma Assert (Result = 0);
+
+            CPU_FREE (CPU_Set);
+         end;
+      end if;
+
+      --  Since the initial signal mask of a thread is inherited from the
+      --  creator, and the Environment task has all its signals masked, we
+      --  do not need to manipulate caller's signal mask at this point.
+      --  All tasks in RTS will have All_Tasks_Mask initially.
+
+      --  Note: the use of Unrestricted_Access in the following call is needed
+      --  because otherwise we have an error of getting a access-to-volatile
+      --  value which points to a non-volatile object. But in this case it is
+      --  safe to do this, since we know we have no problems with aliasing and
+      --  Unrestricted_Access bypasses this check.
+
+      Result := pthread_create
+        (T.Common.LL.Thread'Unrestricted_Access,
+         Thread_Attr'Access,
+         Thread_Body_Access (Wrapper),
+         To_Address (T));
+
+      pragma Assert (Result in 0 | EAGAIN | ENOMEM);
+
+      if Result /= 0 then
+         Succeeded := False;
+         Result := pthread_attr_destroy (Thread_Attr'Access);
+         pragma Assert (Result = 0);
+         return;
+      end if;
+
+      Succeeded := True;
+
+      Result := pthread_attr_destroy (Thread_Attr'Access);
+      pragma Assert (Result = 0);
+
+      Set_Priority (T, Priority);
+   end Create_Task;
+
+   ------------------
+   -- Finalize_TCB --
+   ------------------
+
+   procedure Finalize_TCB (T : Task_Id) is
+      Result : C.int;
+
+   begin
+      if not Single_Lock then
+         Result := pthread_mutex_destroy (T.Common.LL.L'Access);
+         pragma Assert (Result = 0);
+      end if;
+
+      Result := pthread_cond_destroy (T.Common.LL.CV'Access);
+      pragma Assert (Result = 0);
+
+      if T.Known_Tasks_Index /= -1 then
+         Known_Tasks (T.Known_Tasks_Index) := null;
+      end if;
+
+      ATCB_Allocation.Free_ATCB (T);
+   end Finalize_TCB;
+
+   ---------------
+   -- Exit_Task --
+   ---------------
+
+   procedure Exit_Task is
+   begin
+      Specific.Set (null);
+   end Exit_Task;
+
+   ----------------
+   -- Abort_Task --
+   ----------------
+
+   procedure Abort_Task (T : Task_Id) is
+      Result : C.int;
+
+      ESRCH : constant := 3; -- No such process
+      --  It can happen that T has already vanished, in which case pthread_kill
+      --  returns ESRCH, so we don't consider that to be an error.
+
+   begin
+      if Abort_Handler_Installed then
+         Result :=
+           pthread_kill
+             (T.Common.LL.Thread,
+              Signal (System.Interrupt_Management.Abort_Task_Interrupt));
+         pragma Assert (Result in 0 | ESRCH);
+      end if;
+   end Abort_Task;
+
+   ----------------
+   -- Initialize --
+   ----------------
+
+   procedure Initialize (S : in out Suspension_Object) is
+      Result : C.int;
+
+   begin
+      --  Initialize internal state (always to False (RM D.10(6)))
+
+      S.State := False;
+      S.Waiting := False;
+
+      --  Initialize internal mutex
+
+      Result := pthread_mutex_init (S.L'Access, null);
+
+      pragma Assert (Result in 0 | ENOMEM);
+
+      if Result = ENOMEM then
+         raise Storage_Error;
+      end if;
+
+      --  Initialize internal condition variable
+
+      Result := pthread_cond_init (S.CV'Access, null);
+
+      pragma Assert (Result in 0 | ENOMEM);
+
+      if Result /= 0 then
+         Result := pthread_mutex_destroy (S.L'Access);
+         pragma Assert (Result = 0);
+
+         if Result = ENOMEM then
+            raise Storage_Error;
+         end if;
+      end if;
+   end Initialize;
+
+   --------------
+   -- Finalize --
+   --------------
+
+   procedure Finalize (S : in out Suspension_Object) is
+      Result : C.int;
+
+   begin
+      --  Destroy internal mutex
+
+      Result := pthread_mutex_destroy (S.L'Access);
+      pragma Assert (Result = 0);
+
+      --  Destroy internal condition variable
+
+      Result := pthread_cond_destroy (S.CV'Access);
+      pragma Assert (Result = 0);
+   end Finalize;
+
+   -------------------
+   -- Current_State --
+   -------------------
+
+   function Current_State (S : Suspension_Object) return Boolean is
+   begin
+      --  We do not want to use lock on this read operation. State is marked
+      --  as Atomic so that we ensure that the value retrieved is correct.
+
+      return S.State;
+   end Current_State;
+
+   ---------------
+   -- Set_False --
+   ---------------
+
+   procedure Set_False (S : in out Suspension_Object) is
+      Result : C.int;
+
+   begin
+      SSL.Abort_Defer.all;
+
+      Result := pthread_mutex_lock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      S.State := False;
+
+      Result := pthread_mutex_unlock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      SSL.Abort_Undefer.all;
+   end Set_False;
+
+   --------------
+   -- Set_True --
+   --------------
+
+   procedure Set_True (S : in out Suspension_Object) is
+      Result : C.int;
+
+   begin
+      SSL.Abort_Defer.all;
+
+      Result := pthread_mutex_lock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      --  If there is already a task waiting on this suspension object then
+      --  we resume it, leaving the state of the suspension object to False,
+      --  as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
+      --  the state to True.
+
+      if S.Waiting then
+         S.Waiting := False;
+         S.State := False;
+
+         Result := pthread_cond_signal (S.CV'Access);
+         pragma Assert (Result = 0);
+
+      else
+         S.State := True;
+      end if;
+
+      Result := pthread_mutex_unlock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      SSL.Abort_Undefer.all;
+   end Set_True;
+
+   ------------------------
+   -- Suspend_Until_True --
+   ------------------------
+
+   procedure Suspend_Until_True (S : in out Suspension_Object) is
+      Result : C.int;
+
+   begin
+      SSL.Abort_Defer.all;
+
+      Result := pthread_mutex_lock (S.L'Access);
+      pragma Assert (Result = 0);
+
+      if S.Waiting then
+
+         --  Program_Error must be raised upon calling Suspend_Until_True
+         --  if another task is already waiting on that suspension object
+         --  (RM D.10(10)).
+
+         Result := pthread_mutex_unlock (S.L'Access);
+         pragma Assert (Result = 0);
+
+         SSL.Abort_Undefer.all;
+
+         raise Program_Error;
+
+      else
+         --  Suspend the task if the state is False. Otherwise, the task
+         --  continues its execution, and the state of the suspension object
+         --  is set to False (ARM D.10 par. 9).
+
+         if S.State then
+            S.State := False;
+         else
+            S.Waiting := True;
+
+            loop
+               --  Loop in case pthread_cond_wait returns earlier than expected
+               --  (e.g. in case of EINTR caused by a signal). This should not
+               --  happen with the current Linux implementation of pthread, but
+               --  POSIX does not guarantee it so this may change in future.
+
+               Result := pthread_cond_wait (S.CV'Access, S.L'Access);
+               pragma Assert (Result in 0 | EINTR);
+
+               exit when not S.Waiting;
+            end loop;
+         end if;
+
+         Result := pthread_mutex_unlock (S.L'Access);
+         pragma Assert (Result = 0);
+
+         SSL.Abort_Undefer.all;
+      end if;
+   end Suspend_Until_True;
+
+   ----------------
+   -- Check_Exit --
+   ----------------
+
+   --  Dummy version
+
+   function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
+      pragma Unreferenced (Self_ID);
+   begin
+      return True;
+   end Check_Exit;
+
+   --------------------
+   -- Check_No_Locks --
+   --------------------
+
+   function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
+      pragma Unreferenced (Self_ID);
+   begin
+      return True;
+   end Check_No_Locks;
+
+   ----------------------
+   -- Environment_Task --
+   ----------------------
+
+   function Environment_Task return Task_Id is
+   begin
+      return Environment_Task_Id;
+   end Environment_Task;
+
+   ------------------
+   -- Suspend_Task --
+   ------------------
+
+   function Suspend_Task
+     (T           : ST.Task_Id;
+      Thread_Self : Thread_Id) return Boolean
+   is
+   begin
+      if T.Common.LL.Thread /= Thread_Self then
+         return pthread_kill (T.Common.LL.Thread, SIGSTOP) = 0;
+      else
+         return True;
+      end if;
+   end Suspend_Task;
+
+   -----------------
+   -- Resume_Task --
+   -----------------
+
+   function Resume_Task
+     (T           : ST.Task_Id;
+      Thread_Self : Thread_Id) return Boolean
+   is
+   begin
+      if T.Common.LL.Thread /= Thread_Self then
+         return pthread_kill (T.Common.LL.Thread, SIGCONT) = 0;
+      else
+         return True;
+      end if;
+   end Resume_Task;
+
+   --------------------
+   -- Stop_All_Tasks --
+   --------------------
+
+   procedure Stop_All_Tasks is
+   begin
+      null;
+   end Stop_All_Tasks;
+
+   ---------------
+   -- Stop_Task --
+   ---------------
+
+   function Stop_Task (T : ST.Task_Id) return Boolean is
+      pragma Unreferenced (T);
+   begin
+      return False;
+   end Stop_Task;
+
+   -------------------
+   -- Continue_Task --
+   -------------------
+
+   function Continue_Task (T : ST.Task_Id) return Boolean is
+      pragma Unreferenced (T);
+   begin
+      return False;
+   end Continue_Task;
+
+   ----------------
+   -- Initialize --
+   ----------------
+
+   procedure Initialize (Environment_Task : Task_Id) is
+      act     : aliased struct_sigaction;
+      old_act : aliased struct_sigaction;
+      Tmp_Set : aliased sigset_t;
+      Result  : C.int;
+      --  Whether to use an alternate signal stack for stack overflows
+
+      function State
+        (Int : System.Interrupt_Management.Interrupt_ID) return Character;
+      pragma Import (C, State, "__gnat_get_interrupt_state");
+      --  Get interrupt state.  Defined in a-init.c
+      --  The input argument is the interrupt number,
+      --  and the result is one of the following:
+
+      Default : constant Character := 's';
+      --    'n'   this interrupt not set by any Interrupt_State pragma
+      --    'u'   Interrupt_State pragma set state to User
+      --    'r'   Interrupt_State pragma set state to Runtime
+      --    's'   Interrupt_State pragma set state to System (use "default"
+      --           system handler)
+
+   begin
+      Environment_Task_Id := Environment_Task;
+
+      Interrupt_Management.Initialize;
+
+      Base_Monotonic_Clock := Compute_Base_Monotonic_Clock;
+
+      --  Prepare the set of signals that should be unblocked in all tasks
+
+      Result := sigemptyset (Unblocked_Signal_Mask'Access);
+      pragma Assert (Result = 0);
+
+      for J in Interrupt_Management.Interrupt_ID loop
+         if System.Interrupt_Management.Keep_Unmasked (J) then
+            Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
+            pragma Assert (Result = 0);
+         end if;
+      end loop;
+
+      Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
+
+      --  Initialize the global RTS lock
+
+      Specific.Initialize (Environment_Task);
+
+      if Use_Alternate_Stack then
+         Environment_Task.Common.Task_Alternate_Stack :=
+           Alternate_Stack'Address;
+      end if;
+
+      --  Make environment task known here because it doesn't go through
+      --  Activate_Tasks, which does it for all other tasks.
+
+      Known_Tasks (Known_Tasks'First) := Environment_Task;
+      Environment_Task.Known_Tasks_Index := Known_Tasks'First;
+
+      Enter_Task (Environment_Task);
+
+      if State
+          (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
+      then
+         act.sa_flags := 0;
+         act.sa_handler := Abort_Handler'Address;
+
+         Result := sigemptyset (Tmp_Set'Access);
+         pragma Assert (Result = 0);
+         act.sa_mask := Tmp_Set;
+
+         Result :=
+           sigaction
+           (Signal (Interrupt_Management.Abort_Task_Interrupt),
+            act'Unchecked_Access,
+            old_act'Unchecked_Access);
+         pragma Assert (Result = 0);
+         Abort_Handler_Installed := True;
+      end if;
+
+      --  pragma CPU and dispatching domains for the environment task
+
+      Set_Task_Affinity (Environment_Task);
+   end Initialize;
+
+   -----------------------
+   -- Set_Task_Affinity --
+   -----------------------
+
+   procedure Set_Task_Affinity (T : ST.Task_Id) is
+      use type Multiprocessors.CPU_Range;
+
+   begin
+      --  Do nothing if there is no support for setting affinities or the
+      --  underlying thread has not yet been created. If the thread has not
+      --  yet been created then the proper affinity will be set during its
+      --  creation.
+
+      if pthread_setaffinity_np'Address /= Null_Address
+        and then T.Common.LL.Thread /= Null_Thread_Id
+      then
+         declare
+            CPUs    : constant size_t :=
+                        C.size_t (Multiprocessors.Number_Of_CPUs);
+            CPU_Set : cpu_set_t_ptr := null;
+            Size    : constant size_t := CPU_ALLOC_SIZE (CPUs);
+
+            Result  : C.int;
+
+         begin
+            --  We look at the specific CPU (Base_CPU) first, then at the
+            --  Task_Info field, and finally at the assigned dispatching
+            --  domain, if any.
+
+            if T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
+
+               --  Set the affinity to an unique CPU
+
+               CPU_Set := CPU_ALLOC (CPUs);
+               System.OS_Interface.CPU_ZERO (Size, CPU_Set);
+               System.OS_Interface.CPU_SET
+                 (int (T.Common.Base_CPU), Size, CPU_Set);
+
+            --  Handle Task_Info
+
+            elsif T.Common.Task_Info /= null then
+               CPU_Set := T.Common.Task_Info.CPU_Affinity'Access;
+
+            --  Handle dispatching domains
+
+            elsif T.Common.Domain /= null and then
+              (T.Common.Domain /= ST.System_Domain
+                or else T.Common.Domain.all /=
+                          (Multiprocessors.CPU'First ..
+                           Multiprocessors.Number_Of_CPUs => True))
+            then
+               --  Set the affinity to all the processors belonging to the
+               --  dispatching domain. To avoid changing CPU affinities when
+               --  not needed, we set the affinity only when assigning to a
+               --  domain other than the default one, or when the default one
+               --  has been modified.
+
+               CPU_Set := CPU_ALLOC (CPUs);
+               System.OS_Interface.CPU_ZERO (Size, CPU_Set);
+
+               for Proc in T.Common.Domain'Range loop
+                  if T.Common.Domain (Proc) then
+                     System.OS_Interface.CPU_SET (int (Proc), Size, CPU_Set);
+                  end if;
+               end loop;
+            end if;
+
+            --  We set the new affinity if needed. Otherwise, the new task
+            --  will inherit its creator's CPU affinity mask (according to
+            --  the documentation of pthread_setaffinity_np), which is
+            --  consistent with Ada's required semantics.
+
+            if CPU_Set /= null then
+               Result :=
+                 pthread_setaffinity_np (T.Common.LL.Thread, Size, CPU_Set);
+               pragma Assert (Result = 0);
+
+               CPU_FREE (CPU_Set);
+            end if;
+         end;
+      end if;
+   end Set_Task_Affinity;
+
+end System.Task_Primitives.Operations;
-- 
2.13.6

Reply via email to