---
diff --git a/gcc/doc/invoke.texi b/gcc/doc/invoke.texi
index 1391a562c35..28981fa1048 100644
--- a/gcc/doc/invoke.texi
+++ b/gcc/doc/invoke.texi
@@ -11418,6 +11418,19 @@ The maximum number of branches unswitched in a single 
loop.
 @item lim-expensive
 The minimum cost of an expensive expression in the loop invariant motion.
 
+@item max-cond-loop-split-insns
+In a loop, if a branch of a conditional statement is selected since certain
+loop iteration, any operand that contributes to computation of the conditional
+expression remains unchanged in all following iterations, the statement is
+semi-invariant, upon which we can do a kind of loop split transformation.
+@option{max-cond-loop-split-insns} controls maximum number of insns to be
+added due to loop split on semi-invariant conditional statement.
+
+@item min-cond-loop-split-prob
+When FDO profile information is available, @option{min-cond-loop-split-prob}
+specifies minimum threshold for probability of semi-invariant condition
+statement to trigger loop split.
+
 @item iv-consider-all-candidates-bound
 Bound on number of candidates for induction variables, below which
 all candidates are considered for each use in induction variable
diff --git a/gcc/params.def b/gcc/params.def
index 13001a7bb2d..12bc8c26c9e 100644
--- a/gcc/params.def
+++ b/gcc/params.def
@@ -386,6 +386,20 @@ DEFPARAM(PARAM_MAX_UNSWITCH_LEVEL,
        "The maximum number of unswitchings in a single loop.",
        3, 0, 0)
 
+/* The maximum number of increased insns due to loop split on semi-invariant
+   condition statement.  */
+DEFPARAM(PARAM_MAX_COND_LOOP_SPLIT_INSNS,
+       "max-cond-loop-split-insns",
+       "The maximum number of insns to be added due to loop split on "
+       "semi-invariant condition statement.",
+       100, 0, 0)
+
+DEFPARAM(PARAM_MIN_COND_LOOP_SPLIT_PROB,
+       "min-cond-loop-split-prob",
+       "The minimum threshold for probability of semi-invariant condition "
+       "statement to trigger loop split.",
+       30, 0, 100)
+
 /* The maximum number of insns in loop header duplicated by the copy loop
    headers pass.  */
 DEFPARAM(PARAM_MAX_LOOP_HEADER_INSNS,

diff --git a/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C 
b/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C
new file mode 100644
index 00000000000..51f9da22fc7
--- /dev/null
+++ b/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C
@@ -0,0 +1,33 @@
+/* { dg-do compile } */
+/* { dg-options "-O3 -fdump-tree-lsplit-details" } */
+
+#include <string>
+#include <map>
+
+using namespace std;
+
+class  A
+{
+public:
+  bool empty;
+  void set (string s);
+};
+
+class  B
+{
+  map<int, string> m;
+  void f ();
+};
+
+extern A *ga;
+
+void B::f ()
+{
+  for (map<int, string>::iterator iter = m.begin (); iter != m.end (); ++iter)
+    {
+      if (ga->empty)
+        ga->set (iter->second);
+    }
+}
+
+/* { dg-final { scan-tree-dump-times "split loop 1 at branch" 1 "lsplit" } } */
diff --git a/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c 
b/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c
new file mode 100644
index 00000000000..bbd522d6bcd
--- /dev/null
+++ b/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c
@@ -0,0 +1,23 @@
+/* { dg-do compile } */
+/* { dg-options "-O3 -fdump-tree-lsplit-details" } */
+
+__attribute__((pure)) __attribute__((noinline)) int inc (int i)
+{
+  return i + 1;
+}
+
+extern int do_something (void);
+extern int b;
+
+void test(int n)
+{
+  int i;
+
+  for (i = 0; i < n; i = inc (i))
+    {
+      if (b)
+        b = do_something();
+    }
+}
+
+/* { dg-final { scan-tree-dump-times "split loop 1 at branch" 1 "lsplit" } } */
diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c
index f5f083384bc..e4a1b6d2019 100644
--- a/gcc/tree-ssa-loop-split.c
+++ b/gcc/tree-ssa-loop-split.c
@@ -32,7 +32,10 @@ along with GCC; see the file COPYING3.  If not see
 #include "tree-ssa-loop.h"
 #include "tree-ssa-loop-manip.h"
 #include "tree-into-ssa.h"
+#include "tree-inline.h"
+#include "tree-cfgcleanup.h"
 #include "cfgloop.h"
+#include "params.h"
 #include "tree-scalar-evolution.h"
 #include "gimple-iterator.h"
 #include "gimple-pretty-print.h"
@@ -40,7 +43,9 @@ along with GCC; see the file COPYING3.  If not see
 #include "gimple-fold.h"
 #include "gimplify-me.h"
 
-/* This file implements loop splitting, i.e. transformation of loops like
+/* This file implements two kinds of loop splitting.
+
+   One transformation of loops like:
 
    for (i = 0; i < 100; i++)
      {
@@ -612,6 +617,722 @@ split_loop (class loop *loop1, class tree_niter_desc 
*niter)
   return changed;
 }
 
+/* Another transformation of loops like:
+
+   for (i = INIT (); CHECK (i); i = NEXT ())
+     {
+       if (expr (a_1, a_2, ..., a_n))  // expr is pure
+         a_j = ...;  // change at least one a_j
+       else
+         S;          // not change any a_j
+     }
+
+   into:
+
+   for (i = INIT (); CHECK (i); i = NEXT ())
+     {
+       if (expr (a_1, a_2, ..., a_n))
+         a_j = ...;
+       else
+         {
+           S;
+           i = NEXT ();
+           break;
+         }
+     }
+
+   for (; CHECK (i); i = NEXT ())
+     {
+       S;
+     }
+
+   */
+
+/* Data structure to hold temporary information during loop split upon
+   semi-invariant conditional statement.  */
+class split_info {
+public:
+  /* Array of all basic blocks in a loop, returned by get_loop_body().  */
+  basic_block *bbs;
+
+  /* All memory store/clobber statements in a loop.  */
+  auto_vec<gimple *> memory_stores;
+
+  /* Whether above memory stores vector has been filled.  */
+  int need_init;
+
+  split_info () : bbs (NULL),  need_init (true) { }
+
+  ~split_info ()
+    {
+      if (bbs)
+       free (bbs);
+    }
+};
+
+/* Find all statements with memory-write effect in LOOP, including memory
+   store and non-pure function call, and keep those in a vector.  This work
+   is only done one time, for the vector should be constant during analysis
+   stage of semi-invariant condition.  */
+
+static void
+find_vdef_in_loop (struct loop *loop)
+{
+  split_info *info = (split_info *) loop->aux;
+  gphi *vphi = get_virtual_phi (loop->header);
+
+  /* Indicate memory store vector has been filled.  */
+  info->need_init = false;
+
+  /* If loop contains memory operation, there must be a virtual PHI node in
+     loop header basic block.  */
+  if (vphi == NULL)
+    return;
+
+  /* All virtual SSA names inside the loop are connected to be a cyclic
+     graph via virtual PHI nodes.  The virtual PHI node in loop header just
+     links the first and the last virtual SSA names, by using the last as
+     PHI operand to define the first.  */
+  const edge latch = loop_latch_edge (loop);
+  const tree first = gimple_phi_result (vphi);
+  const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
+
+  /* The virtual SSA cyclic graph might consist of only one SSA name, who
+     is defined by itself.
+
+       .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
+
+     This means the loop contains only memory loads, so we can skip it.  */
+  if (first == last)
+    return;
+
+  auto_vec<gimple *> other_stores;
+  auto_vec<tree> worklist;
+  auto_bitmap visited;
+
+  bitmap_set_bit (visited, SSA_NAME_VERSION (first));
+  bitmap_set_bit (visited, SSA_NAME_VERSION (last));
+  worklist.safe_push (last);
+
+  do
+    {
+      tree vuse = worklist.pop ();
+      gimple *stmt = SSA_NAME_DEF_STMT (vuse);
+
+      /* We mark the first and last SSA names as visited at the beginning,
+        and reversely start the process from the last SSA name towards the
+        first, which ensures that this do-while will not touch SSA names
+        defined outside of the loop.  */
+      gcc_assert (gimple_bb (stmt)
+                 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
+
+      if (gimple_code (stmt) == GIMPLE_PHI)
+       {
+         gphi *phi = as_a <gphi *> (stmt);
+
+         for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
+           {
+             tree arg = gimple_phi_arg_def (stmt, i);
+
+             if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
+               worklist.safe_push (arg);
+           }
+       }
+      else
+       {
+         tree prev = gimple_vuse (stmt);
+
+         /* Non-pure call statement is conservatively assumed to impact all
+            memory locations.  So place call statements ahead of other memory
+            stores in the vector with an idea of of using them as shortcut
+            terminators to memory alias analysis.  */
+         if (gimple_code (stmt) == GIMPLE_CALL)
+           info->memory_stores.safe_push (stmt);
+         else
+           other_stores.safe_push (stmt);
+
+         if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
+           worklist.safe_push (prev);
+       }
+    } while (!worklist.is_empty ());
+
+    info->memory_stores.safe_splice (other_stores);
+}
+
+
+/* Given STMT, memory load or pure call statement, check whether it is impacted
+   by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the
+   trace is composed of SKIP_HEAD and those basic block dominated by it, always
+   corresponds to one branch of a conditional statement).  If SKIP_HEAD is
+   NULL, all basic blocks of LOOP are checked.  */
+
+static bool
+vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
+                      const_basic_block skip_head)
+{
+  split_info *info = (split_info *) loop->aux;
+
+  /* Collect memory store/clobber statements if have not do that.  */
+  if (info->need_init)
+    find_vdef_in_loop (loop);
+
+  tree rhs = is_gimple_assign (stmt) ? gimple_assign_rhs1 (stmt) : NULL_TREE;
+  ao_ref ref;
+  gimple *store;
+  unsigned i;
+
+  ao_ref_init (&ref, rhs);
+
+  FOR_EACH_VEC_ELT (info->memory_stores, i, store)
+    {
+      /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL.  */
+      if (skip_head
+         && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
+       continue;
+
+      if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
+       return false;
+    }
+
+  return true;
+}
+
+/* Forward declaration.  */
+
+static bool
+stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
+                      const_basic_block skip_head);
+
+/* Suppose one condition branch, led by SKIP_HEAD, is not executed since
+   certain iteration of LOOP, check whether an SSA name (NAME) remains
+   unchanged in next interation.  We call this characterisic as semi-
+   invariantness.  SKIP_HEAD might be NULL, if so, nothing excluded, all
+   basic blocks and control flows in the loop will be considered.  If non-
+   NULL, SSA name to check is supposed to be defined before SKIP_HEAD.  */
+
+static bool
+ssa_semi_invariant_p (struct loop *loop, const tree name,
+                     const_basic_block skip_head)
+{
+  gimple *def = SSA_NAME_DEF_STMT (name);
+  const_basic_block def_bb = gimple_bb (def);
+
+  /* An SSA name defined outside a loop is definitely semi-invariant.  */
+  if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
+    return true;
+
+  if (gimple_code (def) == GIMPLE_PHI)
+    {
+      /* For PHI node that is not in loop header, its source operands should
+        be defined inside the loop, which are seen as loop variant.  */
+      if (def_bb != loop->header || !skip_head)
+       return false;
+
+      const_edge latch = loop_latch_edge (loop);
+      tree from = PHI_ARG_DEF_FROM_EDGE (as_a <gphi *> (def), latch);
+
+      /* A PHI node in loop header contains two source operands, one is
+        initial value, the other is the copy of last iteration through loop
+        latch, we call it latch value.  From the PHI node to definition
+        of latch value, if excluding branch trace from SKIP_HEAD, there
+        is no definition of other version of same variable, SSA name defined
+        by the PHI node is semi-invariant.
+
+                         loop entry
+                              |     .--- latch ---.
+                              |     |             |
+                              v     v             |
+                  x_1 = PHI <x_0,  x_3>           |
+                           |                      |
+                           v                      |
+              .------- if (cond) -------.         |
+              |                         |         |
+              |                     [ SKIP ]      |
+              |                         |         |
+              |                     x_2 = ...     |
+              |                         |         |
+              '---- T ---->.<---- F ----'         |
+                           |                      |
+                           v                      |
+                  x_3 = PHI <x_1, x_2>            |
+                           |                      |
+                           '----------------------'
+
+       Suppose in certain iteration, execution flow in above graph goes
+       through true branch, which means that one source value to define
+       x_3 in false branch (x2) is skipped, x_3 only comes from x_1, and
+       x_1 in next iterations is defined by x_3, we know that x_1 will
+       never changed if COND always chooses true branch from then on.  */
+
+      while (from != name)
+       {
+         /* A new value comes from a CONSTANT.  */
+         if (TREE_CODE (from) != SSA_NAME)
+           return false;
+
+         gimple *stmt = SSA_NAME_DEF_STMT (from);
+         const_basic_block bb = gimple_bb (stmt);
+
+         /* A new value comes from outside of loop.  */
+         if (!bb || !flow_bb_inside_loop_p (loop, bb))
+           return false;
+
+         from = NULL_TREE;
+
+         if (gimple_code (stmt) == GIMPLE_PHI)
+           {
+             gphi *phi = as_a <gphi *> (stmt);
+
+             for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
+               {
+                 const_edge e = gimple_phi_arg_edge (phi, i);
+
+                 /* Not consider redefinitions in excluded basic blocks.  */
+                 if (!dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
+                   {
+                     /* There are more than one source operands that can
+                        provide value to the SSA name, it is variant.  */
+                     if (from)
+                       return false;
+
+                     from = gimple_phi_arg_def (phi, i);
+                   }
+               }
+           }
+         else if (gimple_code (stmt) == GIMPLE_ASSIGN)
+           {
+             /* For simple value copy, check its rhs instead.  */
+             if (gimple_assign_ssa_name_copy_p (stmt))
+               from = gimple_assign_rhs1 (stmt);
+           }
+
+         /* Any other kind of definition is deemed to introduce a new value
+            to the SSA name.  */
+         if (!from)
+           return false;
+       }
+       return true;
+    }
+
+  /* Value originated from volatile memory load or return of normal (non-
+     const/pure) call should not be treated as constant in each iteration.  */
+  if (gimple_has_side_effects (def))
+    return false;
+
+  /* Check if any memory store may kill memory load at this place.  */
+  if (gimple_vuse (def) && !vuse_semi_invariant_p (loop, def, skip_head))
+    return false;
+
+  /* Check operands of definition statement of the SSA name.  */
+  return stmt_semi_invariant_p (loop, def, skip_head);
+}
+
+/* Check whether STMT is semi-invariant in LOOP, iff all its operands are
+   semi-invariant.  Trace composed of basic block SKIP_HEAD and basic blocks
+   dominated by it are excluded from the loop.  */
+
+static bool
+stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
+                      const_basic_block skip_head)
+{
+  ssa_op_iter iter;
+  tree use;
+
+  /* Although operand of a statement might be SSA name, CONSTANT or VARDECL,
+     here we only need to check SSA name operands.  This is because check on
+     VARDECL operands, which involve memory loads, must have been done
+     prior to invocation of this function in vuse_semi_invariant_p.  */
+  FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
+    {
+      if (!ssa_semi_invariant_p (loop, use, skip_head))
+       return false;
+    }
+
+  return true;
+}
+
+/* Determine when conditional statement never transfers execution to one of its
+   branch, whether we can remove the branch's leading basic block (BRANCH_BB)
+   and those basic blocks dominated by BRANCH_BB.  */
+
+static bool
+branch_removable_p (basic_block branch_bb)
+{
+  if (single_pred_p (branch_bb))
+    return true;
+
+  edge e;
+  edge_iterator ei;
+
+  FOR_EACH_EDGE (e, ei, branch_bb->preds)
+    {
+      if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
+       continue;
+
+      if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
+       continue;
+
+       /* The branch can be reached from opposite branch, or from some
+         statement not dominated by the conditional statement.  */
+      return false;
+    }
+
+  return true;
+}
+
+/* Find out which branch of a conditional statement (COND) is invariant in the
+   execution context of LOOP.  That is: once the branch is selected in certain
+   iteration of the loop, any operand that contributes to computation of the
+   conditional statement remains unchanged in all following iterations.  */
+
+static edge
+get_cond_invariant_branch (struct loop *loop, gcond *cond)
+{
+  basic_block cond_bb = gimple_bb (cond);
+  basic_block targ_bb[2];
+  bool invar[2];
+  unsigned invar_checks;
+
+  for (unsigned i = 0; i < 2; i++)
+    {
+      targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
+
+      /* One branch directs to loop exit, no need to perform loop split upon
+        this conditional statement.  Firstly, it is trivial if the exit branch
+        is semi-invariant, for the statement is just to break loop.  Secondly,
+        if the opposite branch is semi-invariant, it means that the statement
+        is real loop-invariant, which is covered by loop unswitch.  */
+      if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
+       return NULL;
+    }
+
+  invar_checks = 0;
+
+  for (unsigned i = 0; i < 2; i++)
+    {
+      invar[!i] = false;
+
+      if (!branch_removable_p (targ_bb[i]))
+       continue;
+
+      /* Given a semi-invariant branch, if its opposite branch dominates
+        loop latch, it and its following trace will only be executed in
+        final iteration of loop, namely it is not part of repeated body
+        of the loop.  Similar to the above case that the branch is loop
+        exit, no need to split loop.  */
+      if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
+       continue;
+
+      invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
+      invar_checks++;
+    }
+
+  /* With both branches being invariant (handled by loop unswitch) or
+     variant is not what we want.  */
+  if (invar[0] ^ !invar[1])
+    return NULL;
+
+  /* Found a real loop-invariant condition, do nothing.  */
+  if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
+    return NULL;
+
+  return EDGE_SUCC (cond_bb, (unsigned) invar[1]);
+}
+
+/* Calculate increased code size measured by estimated insn number if applying
+   loop split upon certain branch (BRANCH_EDGE) of a conditional statement.  */
+
+static int
+compute_added_num_insns (struct loop *loop, const_edge branch_edge)
+{
+  basic_block cond_bb = branch_edge->src;
+  unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
+  basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
+  basic_block *bbs = ((split_info *) loop->aux)->bbs;
+  int num = 0;
+
+  for (unsigned i = 0; i < loop->num_nodes; i++)
+    {
+      /* Do no count basic blocks only in opposite branch.  */
+      if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
+       continue;
+
+      num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
+    }
+
+  /* It is unnecessary to evaluate expression of the conditional statement
+     in new loop that contains only invariant branch.  This expresion should
+     be constant value (either true or false).  Exclude code size of insns
+     that contribute to computation of the expression.  */
+
+  auto_vec<gimple *> worklist;
+  hash_set<gimple *> removed;
+  gimple *stmt = last_stmt (cond_bb);
+
+  worklist.safe_push (stmt);
+  removed.add (stmt);
+  num -= estimate_num_insns (stmt, &eni_size_weights);
+
+  do
+    {
+      ssa_op_iter opnd_iter;
+      use_operand_p opnd_p;
+
+      stmt = worklist.pop ();
+      FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
+       {
+         tree opnd = USE_FROM_PTR (opnd_p);
+
+         if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
+           continue;
+
+         gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
+         use_operand_p use_p;
+         imm_use_iterator use_iter;
+
+         if (removed.contains (opnd_stmt)
+             || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
+           continue;
+
+         FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
+           {
+              gimple *use_stmt = USE_STMT (use_p);
+
+             if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
+               {
+                 opnd_stmt = NULL;
+                 break;
+               }
+           }
+
+         if (opnd_stmt)
+           {
+             worklist.safe_push (opnd_stmt);
+             removed.add (opnd_stmt);
+             num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
+           }
+       }
+    } while (!worklist.is_empty ());
+
+  gcc_assert (num >= 0);
+  return num;
+}
+
+/* Find out loop-invariant branch of a conditional statement (COND) if it has,
+   and check whether it is eligible and profitable to perform loop split upon
+   this branch in LOOP.  */
+
+static edge
+get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
+{
+  edge invar_branch = get_cond_invariant_branch (loop, cond);
+
+  if (!invar_branch)
+    return NULL;
+
+  profile_probability prob = invar_branch->probability;
+
+  /* When accurate profile information is available, and execution
+     frequency of the branch is too low, just let it go.  */
+  if (prob.reliable_p ())
+    {
+      int thres = PARAM_VALUE (PARAM_MIN_COND_LOOP_SPLIT_PROB);
+
+      if (prob < profile_probability::always ().apply_scale (thres, 100))
+       return NULL;
+    }
+
+  /* Add a threshold for increased code size to disable loop split.  */
+  if (compute_added_num_insns (loop, invar_branch)
+      > PARAM_VALUE (PARAM_MAX_COND_LOOP_SPLIT_INSNS))
+    return NULL;
+
+  return invar_branch;
+}
+
+/* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
+   conditional statement, perform loop split transformation illustrated
+   as the following graph.
+
+               .-------T------ if (true) ------F------.
+               |                    .---------------. |
+               |                    |               | |
+               v                    |               v v
+          pre-header                |            pre-header
+               | .------------.     |                 | .------------.
+               | |            |     |                 | |            |
+               | v            |     |                 | v            |
+             header           |     |               header           |
+               |              |     |                 |              |
+       [ bool r = cond; ]     |     |                 |              |
+               |              |     |                 |              |
+      .---- if (r) -----.     |     |        .--- if (true) ---.     |
+      |                 |     |     |        |                 |     |
+  invariant             |     |     |    invariant             |     |
+      |                 |     |     |        |                 |     |
+      '---T--->.<---F---'     |     |        '---T--->.<---F---'     |
+               |              |    /                  |              |
+             stmts            |   /                 stmts            |
+               |              |  /                    |              |
+              / \             | /                    / \             |
+     .-------*   *       [ if (!r) ]        .-------*   *            |
+     |           |            |             |           |            |
+     |         latch          |             |         latch          |
+     |           |            |             |           |            |
+     |           '------------'             |           '------------'
+     '------------------------. .-----------'
+             loop1            | |                   loop2
+                              v v
+                             exits
+
+   In the graph, loop1 represents the part derived from original one, and
+   loop2 is duplicated using loop_version (), which corresponds to the part
+   of original one being splitted out.  In loop1, a new bool temporary (r)
+   is introduced to keep value of the condition result.  In original latch
+   edge of loop1, we insert a new conditional statement whose value comes
+   from previous temporary (r), one of its branch goes back to loop1 header
+   as a latch edge, and the other branch goes to loop2 pre-header as an entry
+   edge.  And also in loop2, we abandon the variant branch of the conditional
+   statement candidate by setting a constant bool condition, based on which
+   branch is semi-invariant.  */
+
+static bool
+do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
+{
+  basic_block cond_bb = invar_branch->src;
+  bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
+  gcond *cond = as_a <gcond *> (last_stmt (cond_bb));
+
+  gcc_assert (cond_bb->loop_father == loop1);
+
+  if (dump_file && (dump_flags & TDF_DETAILS))
+   {
+     fprintf (dump_file, "In %s(), split loop %d at branch<%s>, BB %d\n",
+             current_function_name (), loop1->num,
+             true_invar ? "T" : "F", cond_bb->index);
+     print_gimple_stmt (dump_file, cond, 0, TDF_SLIM | TDF_VOPS);
+   }
+
+  initialize_original_copy_tables ();
+
+  struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
+                                    profile_probability::always (),
+                                    profile_probability::never (),
+                                    profile_probability::always (),
+                                    profile_probability::always (),
+                                    true);
+  if (!loop2)
+    {
+      free_original_copy_tables ();
+      return false;
+    }
+
+  /* Generate a bool type temporary to hold result of the condition.  */
+  tree tmp = make_ssa_name (boolean_type_node);
+  gimple_stmt_iterator gsi = gsi_last_bb (cond_bb);
+  gimple *stmt = gimple_build_assign (tmp,
+                                     gimple_cond_code (cond),
+                                     gimple_cond_lhs (cond),
+                                     gimple_cond_rhs (cond));
+
+  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
+  gimple_cond_set_condition (cond, EQ_EXPR, tmp, boolean_true_node);
+  update_stmt (cond);
+
+  basic_block cond_bb_copy = get_bb_copy (cond_bb);
+  gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy));
+
+  /* Replace the condition in loop2 with a bool constant to let PassManager
+     remove the variant branch after current pass completes.  */
+  if (true_invar)
+    gimple_cond_make_true (cond_copy);
+  else
+    gimple_cond_make_false (cond_copy);
+
+  update_stmt (cond_copy);
+
+  /* Insert a new conditional statement on latch edge of loop1.  This
+     statement acts as a switch to transfer execution from loop1 to loop2,
+     when loop1 enters into invariant state.  */
+  basic_block latch_bb = split_edge (loop_latch_edge (loop1));
+  basic_block break_bb = split_edge (single_pred_edge (latch_bb));
+  gimple *break_cond = gimple_build_cond (EQ_EXPR, tmp, boolean_true_node,
+                                         NULL_TREE, NULL_TREE);
+
+  gsi = gsi_last_bb (break_bb);
+  gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
+
+  edge to_loop1 = single_succ_edge (break_bb);
+  edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0);
+
+  to_loop1->flags &= ~EDGE_FALLTHRU;
+  to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
+  to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
+
+  update_ssa (TODO_update_ssa);
+
+  /* Due to introduction of a control flow edge from loop1 latch to loop2
+     pre-header, we should update PHIs in loop2 to reflect this connection
+     between loop1 and loop2.  */
+  connect_loop_phis (loop1, loop2, to_loop2);
+
+  free_original_copy_tables ();
+
+  rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
+
+  return true;
+}
+
+/* Traverse all conditional statements in LOOP, to find out a good candidate
+   upon which we can do loop split.  */
+
+static bool
+split_loop_on_cond (struct loop *loop)
+{
+  split_info *info = new split_info ();
+  basic_block *bbs = info->bbs = get_loop_body (loop);
+  bool do_split = false;
+
+  /* Allocate an area to keep temporary info, and associate its address
+     with loop aux field.  */
+  loop->aux = info;
+
+  for (unsigned i = 0; i < loop->num_nodes; i++)
+    {
+      basic_block bb = bbs[i];
+
+      /* We only consider conditional statement, which be executed at most once
+        in each iteration of the loop.  So skip statements in inner loops.  */
+      if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
+       continue;
+
+      /* Actually this check is not a must constraint. With it, we can ensure
+        conditional statement will always be executed in each iteration. */
+      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
+       continue;
+
+      gimple *last = last_stmt (bb);
+
+      if (!last || gimple_code (last) != GIMPLE_COND)
+       continue;
+
+      gcond *cond = as_a <gcond *> (last);
+      edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
+
+      if (branch_edge)
+       {
+         do_split_loop_on_cond (loop, branch_edge);
+         do_split = true;
+         break;
+       }
+    }
+
+  delete info;
+  loop->aux = NULL;
+
+  return do_split;
+}
+
 /* Main entry point.  Perform loop splitting on all suitable loops.  */
 
 static unsigned int
@@ -662,6 +1383,32 @@ tree_ssa_split_loops (void)
        }
     }
 
+  if (changed)
+    {
+      cleanup_tree_cfg ();
+      changed = false;
+    }
+
+  /* Perform loop splitting for suitable if-conditions in all loops.  */
+  FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
+    loop->aux = NULL;
+
+  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
+    {
+      if (loop->aux)
+        {
+         loop_outer (loop)->aux = loop;
+         continue;
+       }
+
+      if (!optimize_loop_for_size_p (loop)
+         && split_loop_on_cond (loop))
+       {
+         loop_outer (loop)->aux = loop;
+         changed = true;
+       }
+    }
+
   FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
     loop->aux = NULL;
 
-- 
2.17.1

Reply via email to