Hi Richard,
I have updated the patch, changelog is the same.
bootstrapped and regtested on aarch64-none-linux-gnu and no issues.
OK for gcc 9 and 8?
Thanks,
Tamar
The 03/10/2020 11:49, Richard Sandiford wrote:
> Tamar Christina <[email protected]> writes:
> > Hi All,
> >
> > This works around an ICE in reload where from expand we get the following
> > RTL
> > generated for VSTRUCT mode writes:
> >
> > (insn 446 354 445 2 (set (reg:CI 383)
> > (subreg:CI (reg:V4SI 291) 0)) "small.i":146:22 3408 {*aarch64_movci}
> > (nil))
> >
> > This sequence is trying to say two things:
> >
> > 1) liveliness: It's trying to say that eventually the whole CI reg will be
> > written to. It does this by generating the paradoxical subreg.
> > 2) write data: It's trying to in the same instruction also write the V4SI
> > mode
> > component at offset 0 in the CI reg.
> >
> > Reload is unable to understand this concept and so it attempts to handle
> > this
> > instruction by breaking apart the instruction, first writing the data and
> > then
> > tries to reload the paradoxical part. This gets it to the same instruction
> > again and eventually we ICE since we reach the limit of no. reloads.
>
> reload/LRA does understand the concept. It just isn't handling this
> particular case very well :-)
>
> The pre-RA insn is:
>
> (insn 210 218 209 6 (set (reg/v:OI 182 [ vres ])
> (subreg:OI (reg:V4SI 289) 0)) "pr94052.C":157:31 3518 {*aarch64_movoi}
> (expr_list:REG_DEAD (reg:V4SI 289)
> (nil)))
>
> IRA allocates a hard register to r182 but not r289:
>
> 126:r182 l0 32 ...
> ...
> 129:r289 l0 mem ...
>
> This is because memory appears to be cheaper:
>
> a129(r289,l2) costs: FP_LO8_REGS:136,136 FP_LO_REGS:136,136 FP_REGS:136,136
> MEM:110,110
>
> That's probably a bug in itself (possibly in the target costs), but it
> shouldn't be a correctness issue.
>
> LRA then handles insn 210 like this:
>
> Creating newreg=317, assigning class ALL_REGS to slow/invalid mem r317
> Creating newreg=318, assigning class ALL_REGS to slow/invalid mem r318
> 210: r182:OI=r318:OI
> REG_DEAD r289:V4SI
> Inserting slow/invalid mem reload before:
> 355: r317:V4SI=[sfp:DI+0x60]
> 356: r318:OI=r317:V4SI#0
>
> 1 Non pseudo reload: reject++
> alt=0,overall=1,losers=0,rld_nregs=0
> Choosing alt 0 in insn 210: (0) =w (1) w {*aarch64_movoi}
> Change to class FP_REGS for r318
>
> That looks OK so far, given the allocation. But later we have:
>
> ********** Assignment #2: **********
>
> Assigning to 318 (cl=FP_REGS, orig=318, freq=44, tfirst=318,
> tfreq=44)...
> Assign 32 to subreg reload r318 (freq=44)
> Assigning to 317 (cl=ALL_REGS, orig=317, freq=44, tfirst=317,
> tfreq=44)...
> Assign 0 to subreg reload r317 (freq=44)
>
> So LRA is assigning a GPR (x0) to the new V4SI register r317. It's this
> allocation that induces the cycling, because we get:
>
> Cycle danger: overall += LRA_MAX_REJECT
> alt=0,overall=606,losers=1,rld_nregs=2
> 0 Spill pseudo into memory: reject+=3
> Using memory insn operand 0: reject+=3
> 0 Non input pseudo reload: reject++
> Cycle danger: overall += LRA_MAX_REJECT
> alt=1,overall=619,losers=2,rld_nregs=2
> 1 Spill pseudo into memory: reject+=3
> Using memory insn operand 1: reject+=3
> alt=2,overall=12,losers=1,rld_nregs=0
> Choosing alt 2 in insn 356: (0) w (1) Utv {*aarch64_movoi}
> Creating newreg=319, assigning class NO_REGS to r319
> 356: r318:OI=r319:OI
> REG_DEAD r317:V4SI
> Inserting insn reload before:
> 357: r319:OI=r317:V4SI#0
>
> 0 Non input pseudo reload: reject++
> alt=0,overall=13,losers=2,rld_nregs=4
> 0 Non pseudo reload: reject++
> alt=1,overall=7,losers=1,rld_nregs=2
> 0 Non input pseudo reload: reject++
> 1 Spill pseudo into memory: reject+=3
> Using memory insn operand 1: reject+=3
> alt=2,overall=19,losers=2 -- refuse
> Choosing alt 1 in insn 357: (0) Utv (1) w {*aarch64_movoi}
> Creating newreg=320, assigning class FP_REGS to r320
> 357: r319:OI=r320:OI
> Inserting insn reload before:
> 358: r320:OI=r317:V4SI#0
>
> and we keep oscillating between those two choices (alt 2 vs alt 1).
> This wouldn't have happened if we'd allocated an FPR instead.
>
> I think the problem here is that we're always trying to reload the
> subreg rather than the inner register, even though the allocation for
> the inner register isn't valid for the subreg. There is code in
> simplify_operand_subreg to detect this kind of situation, but it
> seems to be missing a check for hard_regno_mode_ok. The first patch
> below seems to fix that.
>
> > This patch fixes it by in the backend when we see such a paradoxical
> > construction breaking it apart and issuing a clobber to correct the
> > liveliness
> > information and then emitting a normal subreg write for the component that
> > the
> > paradoxical subreg was trying to write to.
> >
> > Concretely we generate this:
> >
> > (insn 42 41 43 (clobber (reg/v:CI 122 [ diD.5226 ])) "small.i":121:23 -1
> > (nil))
> >
> > (insn 43 42 44 (set (subreg:V4SI (reg/v:CI 122 [ diD.5226 ]) 0)
> > (reg:V4SI 136)) "small.i":121:23 -1
> > (nil))
> >
> > Bootstrapped Regtested on aarch64-none-linux-gnu and no issues.
> >
> > Ok for master and back-port to GCC 9 and GCC 8 after some stew?
> >
> > I will look into seeing if we can not generate these at all, but I'm not
> > sure
> > this is possible since the mid-end would need both the Mode and the Class to
> > know that a pseudo will be assigned to multiple hardregs.
>
> Subreg-based register liveness divides the register into
> REGMODE_NATURAL_SIZE chunks (traditionally word-sized chunks).
> E.g. read_modify_subreg_p checks whether a particular subreg
> preserves part of the old value or not. I think it's these rules
> that matter here.
>
> The second patch below adds that check to emit_group_store and generates
> slightly better code than the paradoxical version did.
>
> Both patches fix the bug independently, although the second is more
> of a workaround than a fix. Unfortunately I messed up overnight testing
> so they've only been tested on aarch64-linux-gnu so far. I'll try again
> tonight...
>
> I think we should aim to fix this in target-independent code for master,
> but I agree that's probably too invasive to backport and so the AArch64
> workaround might be more appropriate for branches.
>
> > + /* If we have a paradoxical subreg trying to write to <MODE> from and the
> > + registers don't overlap then we need to break it apart. What it's
> > trying
> > + to do is give two kind of information at the same time. It's trying
> > to
> > + convey liveness information by saying that the entire register will be
> > + written to eventually, but it also only wants to write a single part
> > of the
> > + register. Hence the paradoxical subreg.
> > +
> > + However reload doesn't understand this concept and it will ultimately
> > ICE.
> > + Instead of allowing this we will split the two concerns. The liveness
> > + information will be conveyed using a clobber and then we break apart
> > the
> > + paradoxical subreg into just a normal write of the part that it
> > wanted to
> > + write originally. */
>
> As above, we should avoid saying that reload doesn't understand
> the concept. We're just working around a specific bug.
>
> > + if (paradoxical_subreg_p (operands[1]))
> > + {
> > + if (!reg_overlap_mentioned_p (operands[0], operands[1]))
> > + emit_clobber (operands[0]);
> > + poly_uint64 offset = SUBREG_BYTE (operands[1]);
> > + operands[1] = SUBREG_REG (operands[1]);
> > + operands[0] = simplify_gen_subreg (GET_MODE (operands[1]),
> > operands[0],
> > + <MODE>mode, offset);
> > + }
>
> SUBREG_BYTE is always 0 for paradoxical subregs, so this will do the
> wrong thing for big-endian. It's probably better to use gen_lowpart
> to get the destination.
>
> We should probably also check that operands[0] is a REG. In practice
> it probably always will be at this point if the source is a SUBREG,
> but it doesn't follow automatically, and given that this is supposed
> to be a safe backport...
>
> FWIW, another option would be to make aarch64_preferred_reload_class
> return FP_REGS for 128-bit vector modes, if the given class is a
> superset of FP_REGS. On the one hand that feels cleaner: there's a
> good argument that we should be doing that anyway, since it means
> we can reload in Q registers rather than pairs of X registers.
> But on the other hand, it feels less safe for backporting. E.g. maybe
> we'll find another corner case that fails if a GPR *isn't* chosen.
>
> Thanks,
> Richard
>
> From f75d209ab3c27fcfea915fe77f37fa4f973f9dd0 Mon Sep 17 00:00:00 2001
> From: Richard Sandiford <[email protected]>
> Date: Mon, 9 Mar 2020 19:42:57 +0000
> Subject: [PATCH 1/2] lra: Tighten check for reloading paradoxical subregs
> [PR94052]
>
> simplify_operand_subreg tries to detect whether the allocation for
> a pseudo in a paradoxical subreg is also valid for the outer mode.
> The condition it used to check for an invalid combination was:
>
> else if (REG_P (reg)
> && REGNO (reg) >= FIRST_PSEUDO_REGISTER
> && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
> && (hard_regno_nregs (hard_regno, innermode)
> < hard_regno_nregs (hard_regno, mode))
> && (regclass = lra_get_allocno_class (REGNO (reg)))
> && (type != OP_IN
> || !in_hard_reg_set_p (reg_class_contents[regclass],
> mode, hard_regno)
> || overlaps_hard_reg_set_p (lra_no_alloc_regs,
> mode, hard_regno)))
>
> I think there are two problems with this:
>
> (1) It never actually checks whether the hard register is valid for the
> outer mode (in the hard_regno_mode_ok sense). If it isn't, any attempt
> to reload in the outer mode is likely to cycle, because the implied
> regno/mode combination will be just as invalid next time
> curr_insn_transform sees the subreg.
>
> (2) The check is valid for little-endian only. For big-endian we need
> to move hard_regno backwards.
>
> Using simplify_subreg_regno should avoid both problems.
>
> As the existing comment says, IRA should always take subreg references
> into account when allocating hard registers, so this fix-up should only
> really be needed for pseudos allocated by LRA itself.
>
> 2020-03-10 Richard Sandiford <[email protected]>
>
> gcc/
> PR rtl-optimization/94052
> * lra-constraints.c (simplify_operand_subreg): Reload the inner
> register of a paradoxical subreg if simplify_subreg_regno fails
> to give a valid hard register for the outer mode.
> ---
> gcc/lra-constraints.c | 24 ++++++++++++++----------
> 1 file changed, 14 insertions(+), 10 deletions(-)
>
> diff --git a/gcc/lra-constraints.c b/gcc/lra-constraints.c
> index f71e0c9ff8d..bf6d4a2fd4b 100644
> --- a/gcc/lra-constraints.c
> +++ b/gcc/lra-constraints.c
> @@ -1489,7 +1489,7 @@ static bool process_address (int, bool, rtx_insn **,
> rtx_insn **);
> static bool
> simplify_operand_subreg (int nop, machine_mode reg_mode)
> {
> - int hard_regno;
> + int hard_regno, inner_hard_regno;
> rtx_insn *before, *after;
> machine_mode mode, innermode;
> rtx reg, new_reg;
> @@ -1735,15 +1735,19 @@ simplify_operand_subreg (int nop, machine_mode
> reg_mode)
> for the new uses. */
> else if (REG_P (reg)
> && REGNO (reg) >= FIRST_PSEUDO_REGISTER
> - && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
> - && (hard_regno_nregs (hard_regno, innermode)
> - < hard_regno_nregs (hard_regno, mode))
> - && (regclass = lra_get_allocno_class (REGNO (reg)))
> - && (type != OP_IN
> - || !in_hard_reg_set_p (reg_class_contents[regclass],
> - mode, hard_regno)
> - || overlaps_hard_reg_set_p (lra_no_alloc_regs,
> - mode, hard_regno)))
> + && paradoxical_subreg_p (operand)
> + && (inner_hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
> + && ((hard_regno
> + = simplify_subreg_regno (inner_hard_regno, innermode,
> + SUBREG_BYTE (operand), mode)) < 0
> + || ((hard_regno_nregs (inner_hard_regno, innermode)
> + < hard_regno_nregs (hard_regno, mode))
> + && (regclass = lra_get_allocno_class (REGNO (reg)))
> + && (type != OP_IN
> + || !in_hard_reg_set_p (reg_class_contents[regclass],
> + mode, hard_regno)
> + || overlaps_hard_reg_set_p (lra_no_alloc_regs,
> + mode, hard_regno)))))
> {
> /* The class will be defined later in curr_insn_transform. */
> enum reg_class rclass
> --
> 2.17.1
>
> From 19ae0b272c7a191634249cdab90e5d9512b1474b Mon Sep 17 00:00:00 2001
> From: Richard Sandiford <[email protected]>
> Date: Tue, 10 Mar 2020 09:17:17 +0000
> Subject: [PATCH 2/2] expand: Tweak paradoxical subreg handling in
> emit_group_store [PR94052]
>
> emit_group_store normally tries to start the sequence by storing
> a paradoxical subreg of one source value into the whole destination.
> That seems reasonable when the destination is effectively a single
> register, but as explained in the comment, it seems likely to make
> things worse then the destination is bigger than that.
>
> 2020-03-10 Richard Sandiford <[email protected]>
>
> gcc/
> PR middle-end/94052
> * expr.c (emit_group_store): Clobber a multi-register destination
> before storing to it.
> ---
> gcc/expr.c | 31 +++++++++++++++++++++++++++++--
> 1 file changed, 29 insertions(+), 2 deletions(-)
>
> diff --git a/gcc/expr.c b/gcc/expr.c
> index b97c217e86d..57529f25769 100644
> --- a/gcc/expr.c
> +++ b/gcc/expr.c
> @@ -2489,7 +2489,9 @@ emit_group_store (rtx orig_dst, rtx src, tree type
> ATTRIBUTE_UNUSED,
> for (i = start; i < finish; i++)
> {
> rtx reg = XEXP (XVECEXP (src, 0, i), 0);
> - if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
> + /* Checking for reg == dst (which is very unlikely to be true) ensures
> + that we can emit a clobber of dst when dst is a pseudo register. */
> + if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER || reg == dst)
> {
> tmps[i] = gen_reg_rtx (GET_MODE (reg));
> emit_move_insn (tmps[i], reg);
> @@ -2530,11 +2532,36 @@ emit_group_store (rtx orig_dst, rtx src, tree type
> ATTRIBUTE_UNUSED,
> if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
> dst = gen_reg_rtx (outer);
>
> + /* Clobber the destination if pieces of it can be modified
> + independently. This ensures that we can assign to the individual
> + pieces of dst without leaving dst upwards exposed.
> +
> + The alternatives below are less likely to be useful for this case.
> + Creating a paradoxical subreg leads to moves like:
> +
> + (set (reg:TI X) (subreg:TI (reg:DI Y) 0))
> +
> + On a 64-bit target, this would normally be split into two DI moves
> + after register allocation. We'd then expect one of those DI moves
> + to be removed as dead due to later assignments to parts of X.
> + However, the instruction must still be reloaded as a TImode move
> + and the allocation of Y must be valid for TImode as well as DImode,
> + even though we only really want a single DImode move.
> +
> + If we set dst to zero instead, there's a risk that the
> + redundancy will never be eliminated, particularly if the
> + destination occupies more than two registers. */
> + if (known_gt (GET_MODE_SIZE (outer), REGMODE_NATURAL_SIZE (outer)))
> + {
> + emit_clobber (dst);
> + done = 1;
> + }
> +
> /* Make life a bit easier for combine. */
> /* If the first element of the vector is the low part
> of the destination mode, use a paradoxical subreg to
> initialize the destination. */
> - if (start < finish)
> + if (!done && start < finish)
> {
> inner = GET_MODE (tmps[start]);
> bytepos = subreg_lowpart_offset (inner, outer);
> --
> 2.17.1
>
--
diff --git a/gcc/config/aarch64/aarch64-simd.md b/gcc/config/aarch64/aarch64-simd.md
index 89aaf8c018e3340dd2d53fc2a6538d3d1220b103..16abe70be0ad90d3befdc5c4dfdb1471f2c98c58 100644
--- a/gcc/config/aarch64/aarch64-simd.md
+++ b/gcc/config/aarch64/aarch64-simd.md
@@ -5330,6 +5330,26 @@ (define_expand "mov<mode>"
if (GET_CODE (operands[0]) != REG)
operands[1] = force_reg (<MODE>mode, operands[1]);
}
+
+ /* If we have a paradoxical subreg trying to write to <MODE> from and the
+ registers don't overlap then we need to break it apart. What it's trying
+ to do is give two kind of information at the same time. It's trying to
+ convey liveness information by saying that the entire register will be
+ written to eventually, but it also only wants to write a single part of the
+ register. Hence the paradoxical subreg.
+
+ Instead of allowing this we will split the two concerns. The liveness
+ information will be conveyed using a clobber and then we break apart the
+ paradoxical subreg into just a normal write of the part that it wanted to
+ write originally. */
+
+ if (REG_P(operands[0]) && paradoxical_subreg_p (operands[1]))
+ {
+ if (!reg_overlap_mentioned_p (operands[0], operands[1]))
+ emit_clobber (operands[0]);
+ operands[1] = SUBREG_REG (operands[1]);
+ operands[0] = gen_lowpart (GET_MODE (operands[1]), operands[0]);
+ }
})
diff --git a/gcc/testsuite/g++.target/aarch64/pr94052.C b/gcc/testsuite/g++.target/aarch64/pr94052.C
new file mode 100644
index 0000000000000000000000000000000000000000..d36c9bdc1588533db35eb3cbd2502034edd25452
--- /dev/null
+++ b/gcc/testsuite/g++.target/aarch64/pr94052.C
@@ -0,0 +1,174 @@
+/* { dg-do compile } */
+/* { dg-additional-options "-O2 -std=gnu++11 -w" } */
+
+namespace c {
+typedef int d;
+template <typename e> struct f { typedef e g; };
+template <bool, typename> struct h;
+template <typename e> e aa(typename f<e>::g i) { return i; }
+template <typename, typename> struct j {};
+template <d, typename> struct k;
+template <class l, class m> struct k<1, j<l, m>> { typedef m g; };
+template <d n, class l, class m> typename k<n, j<l, m>>::g ab(j<l, m>);
+} // namespace c
+typedef long d;
+typedef char o;
+typedef int p;
+typedef char q;
+typedef int r;
+namespace {
+struct s;
+constexpr d t = 6;
+template <typename> class ad {
+public:
+ static constexpr d u = t;
+ d v();
+ d x();
+ d y();
+};
+class z : ad<int> {};
+struct ae {
+ p af;
+};
+class ag {
+public:
+ ae ah();
+};
+} // namespace
+typedef __Int32x4_t ai;
+typedef struct {
+ ai aj[2];
+} ak;
+typedef int al;
+void am(p *a, ai b) { __builtin_aarch64_st1v4si(a, b); }
+namespace an {
+class ao {
+public:
+ bool operator==(ao);
+ d v();
+ d x();
+};
+class ap : public ad<r> {};
+class aq {
+public:
+ c::j<int, int> ar();
+ int as();
+ int at();
+};
+class au {
+public:
+ virtual d av(d);
+ virtual ap aw();
+ virtual ag ax();
+};
+class ay {};
+class az {
+ virtual void ba(const ay &, const s &);
+};
+using bb = az;
+class bc;
+class bd : bb {
+ void ba(const ay &, const s &);
+ bc *be;
+ bc *bf;
+ bc *bg;
+ aq bh;
+ int bi;
+ int bj;
+ ao bk;
+};
+namespace bl {
+namespace bm {
+namespace bn {
+class bo;
+}
+} // namespace bm
+} // namespace bl
+namespace bn {
+template <typename ac = c::h<0, bl::bm ::bn::bo>>
+ai bp(ac *, ac *, ac *, al, al, al, d, p);
+template <typename ac = c::h<0, bl::bm ::bn::bo>>
+ak bq(ac *br, ac *bs, ac *bt, al bu, al bv, al bw, d bx, int, int by) {
+ ak{bp(br, bs, bt, bu, bv, bw, bx, by), bp(br, bs, bt, bu, bv, bw, bx, by)};
+}
+template <typename ac = c::h<0, bl::bm ::bn::bo>>
+ak bz(ac *, ac *, ac *, al, al, al &, int, p);
+template <int> void ca(p *, const ak &);
+template <> void ca<1>(p *buffer, const ak &cb) {
+ am(buffer, cb.aj[0]);
+ am(buffer + 4, cb.aj[1]);
+}
+int cc(int, int);
+} // namespace bn
+class bc {
+public:
+ virtual au *cd();
+};
+class ce {
+public:
+ q *cf();
+};
+template <d> struct cg {
+ template <typename ch> static void ci(ay, z cj, ch ck) { ck(cj); }
+};
+template <typename ch> void cl(ay w, ch ck) {
+ z cj;
+ cg<z::u>::ci(w, cj, c::aa<ch>(ck));
+}
+namespace {
+template <typename T1, typename cm, int cn> class co {
+public:
+ static void convolve(ay, int cs, bc *cp, bc *cq, bc *cr, aq cw, int, ao ct) {
+ int by = cp->cd()->ax().ah().af;
+ int cu = cq->cd()->ax().ah().af;
+ cp->cd()->aw().v();
+ int cv = cp->cd()->aw().x();
+ cp->cd()->aw().y();
+ cp->cd()->aw();
+ int da = cr->cd()->aw().x();
+ int cx = cq->cd()->aw().x();
+ cq->cd()->aw().y();
+ int cy = cr->cd()->av(0);
+ int cz = cr->cd()->av(1);
+ bn::cc(cs, cn);
+ int de = c::ab<1>(cw.ar());
+ cw.as();
+ cw.at();
+ ay db;
+ ce dc;
+ ce dd;
+ ce w;
+ q *di = w.cf();
+ cl(db, [&](z) {
+ int df;
+ dc;
+ di;
+ cx;
+ auto dg(cu);
+ auto dh(cu);
+ auto dl(cu);
+ for (; cz; df += de) {
+ auto br = reinterpret_cast<T1 *>(cv);
+ auto bs = reinterpret_cast<T1 *>(cv);
+ auto bt = reinterpret_cast<T1 *>(df * ct.x());
+ auto dj = reinterpret_cast<cm *>(dd.cf() + da);
+ for (int dk; dk < cy; dk += cs, dj += cs)
+ if (ct == ao()) {
+ auto vres = bn::bz(br, bs, bt, dg, dh, dl, cn, by);
+ bn::ca<cn>(dj, vres);
+ } else
+ bn::bq(br, bs, bt, dg, dh, dl, ct.v(), cn, by);
+ }
+ });
+ }
+};
+template <typename T1, typename cm>
+void bz(ay dm, int cs, bc *cp, bc *cq, bc *cr, aq cw, int dn, ao ct) {
+ co<T1, cm, 1>::convolve(dm, cs, cp, cq, cr, cw, dn, ct);
+ co<T1, cm, 2>::convolve(dm, cs, cp, cq, cr, cw, dn, ct);
+}
+} // namespace
+void bd::ba(const ay &dm, const s &) {
+ bz<o, p>(dm, bi, be, bg, bf, bh, bj, bk);
+}
+} // namespace an