On 4/9/20 1:32 PM, Jason Merrill wrote:
On 4/9/20 3:24 PM, Martin Sebor wrote:
On 4/9/20 1:03 PM, Jason Merrill wrote:
On 4/8/20 1:23 PM, Martin Sebor wrote:
On 4/7/20 3:36 PM, Marek Polacek wrote:
On Tue, Apr 07, 2020 at 02:46:52PM -0600, Martin Sebor wrote:
On 4/7/20 1:50 PM, Marek Polacek wrote:
On Tue, Apr 07, 2020 at 12:50:48PM -0600, Martin Sebor via Gcc-patches wrote:
Among the numerous regressions introduced by the change committed
to GCC 9 to allow string literals as template arguments is a failure to recognize the C++ nullptr and GCC's __null constants as pointers. For one, I didn't realize that nullptr, being a null pointer constant, doesn't have a pointer type, and two, I didn't think of __null (which
is a special integer constant that NULL sometimes expands to).

The attached patch adjusts the special handling of trailing zero
initializers in reshape_init_array_1 to recognize both kinds of
constants and avoid treating them as zeros of the array integer
element type.  This restores the expected diagnostics when either
constant is used in the initializer list.

Martin

PR c++/94510 - nullptr_t implicitly cast to zero twice in std::array

gcc/cp/ChangeLog:

    PR c++/94510
    * decl.c (reshape_init_array_1): Exclude mismatches with all kinds
    of pointers.

gcc/testsuite/ChangeLog:

    PR c++/94510
    * g++.dg/init/array57.C: New test.
    * g++.dg/init/array58.C: New test.

diff --git a/gcc/cp/decl.c b/gcc/cp/decl.c
index a127734af69..692c8ed73f4 100644
--- a/gcc/cp/decl.c
+++ b/gcc/cp/decl.c
@@ -6041,9 +6041,14 @@ reshape_init_array_1 (tree elt_type, tree max_index, reshape_iter *d,
       TREE_CONSTANT (new_init) = false;
         /* Pointers initialized to strings must be treated as non-zero
-     even if the string is empty.  */
+     even if the string is empty.  Handle all kinds of pointers,
+     including std::nullptr and GCC's __nullptr, neither of which
+     has a pointer type.  */
         tree init_type = TREE_TYPE (elt_init);
-      if (POINTER_TYPE_P (elt_type) != POINTER_TYPE_P (init_type)
+      bool init_is_ptr = (POINTER_TYPE_P (init_type)
+              || NULLPTR_TYPE_P (init_type)
+              || null_node_p (elt_init));
+      if (POINTER_TYPE_P (elt_type) != init_is_ptr
         || !type_initializer_zero_p (elt_type, elt_init))
       last_nonzero = index;

It looks like this still won't handle e.g. pointers to member functions,
e.g.

struct S { };
int arr[3] = { (void (S::*) ()) 0, 0, 0 };

would still be accepted.  You could use TYPE_PTR_OR_PTRMEM_P instead of
POINTER_TYPE_P to catch this case.

Good catch!  That doesn't fail because unlike null data member pointers
which are represented as -1, member function pointers are represented
as a zero.

I had looked for an API that would answer the question: "is this
expression a pointer?" without having to think of all the different
kinds of them but all I could find was null_node_p().  Is this a rare,
isolated case that having an API like that wouldn't be worth having
or should I add one like in the attached update?

Martin

PR c++/94510 - nullptr_t implicitly cast to zero twice in std::array

gcc/cp/ChangeLog:

    PR c++/94510
    * decl.c (reshape_init_array_1): Exclude mismatches with all kinds
    of pointers.
    * gcc/cp/cp-tree.h (null_pointer_constant_p): New function.

(Drop the gcc/cp/.)

+/* Returns true if EXPR is a null pointer constant of any type.  */
+
+inline bool
+null_pointer_constant_p (tree expr)
+{
+  STRIP_ANY_LOCATION_WRAPPER (expr);
+  if (expr == null_node)
+    return true;
+  tree type = TREE_TYPE (expr);
+  if (NULLPTR_TYPE_P (type))
+    return true;
+  if (POINTER_TYPE_P (type))
+    return integer_zerop (expr);
+  return null_member_pointer_value_p (expr);
+}
+

We already have a null_ptr_cst_p so it would be sort of confusing to have this as well.  But are you really interested in whether it's a null pointer,
not just a pointer?

The goal of the code is to detect a mismatch in "pointerness" between
an initializer expression and the type of the initialized element, so
it needs to know if the expression is a pointer (non-nulls pointers
are detected in type_initializer_zero_p).  That means testing a number
of IMO unintuitive conditions:

   TYPE_PTR_OR_PTRMEM_P (TREE_TYPE (expr))
   || NULLPTR_TYPE_P (TREE_TYPE (expr))
   || null_node_p (expr)

I don't know if this type of a query is common in the C++ FE but unless
this is an isolated use case then besides fixing the bug I thought it
would be nice to make it easier to get the test above right, or at least
come close to it.

Since null_pointer_constant_p already exists (but isn't suitable here
because it returns true for plain literal zeros)

Why is that unsuitable?  A literal zero is a perfectly good zero-initializer for a pointer.

Right, that's why it's not suitable here.  Because a literal zero
is also not a pointer.

The question the code asks is: "is the initializer expression
a pointer (of any kind)?"

Why is that a question we want to ask?  What we need here is to know whether the initializer expression is equivalent to implicit zero-initialization.  For initializing a pointer, a literal 0 is equivalent, so we don't want to update last_nonzero.

Yes, but that's not the bug we're fixing.  The problem occurs with
an integer array and a pointer initializer:

  int a[2] = { nullptr, 0 };

and with elt_type = TREE_TYPE (a) and init_type TREE_TYPE (nullptr)
the test

  POINTER_TYPE_P (elt_type) != POINTER_TYPE_P (init_type)

evaluates to false because neither type is a pointer type and

  type_initializer_zero_p (elt_type, elt_init)

returns true because nullptr is zero, and so last_nonzero doesn't
get set, the element gets trimmed, and the invalid initialization
of int with nullptr isn't diagnosed.

But I'm not sure if you're questioning the current code, the simple
fix quoted above, or my assertion that null_pointer_constant_p would
not be a suitable function to call to tell if an initializer is
nullptr vs plain zero.

Also, why is the pointer check here rather than part of the POINTER_TYPE_P handling in type_initializer_zero_p?

type_initializer_zero_p is implemented in terms of initializer_zerop
with the only difference that empty strings are considered to be zero
only for char arrays and not char pointers.

It could be changed to return false for incompatible initializers
like pointers (or even __null) for non-pointer types, even if they
are zero, but that's not what it's designed to do.

Martin

  and I thought that might be common enough
to justify adding a helper function for.  If it isn't then leaving
it open-coded as it is in the updated patch below is fine with me.

--- a/gcc/cp/decl.c
+++ b/gcc/cp/decl.c
@@ -6041,9 +6041,14 @@ reshape_init_array_1 (tree elt_type, tree max_index, reshape_iter *d,
      TREE_CONSTANT (new_init) = false;

        /* Pointers initialized to strings must be treated as non-zero
-     even if the string is empty.  */
+     even if the string is empty.  Handle all kinds of pointers,
+     including std::nullptr and GCC's __nullptr, neither of which
+     has a pointer type.  */
        tree init_type = TREE_TYPE (elt_init);
-      if (POINTER_TYPE_P (elt_type) != POINTER_TYPE_P (init_type)
+      bool init_is_ptr = (TYPE_PTR_OR_PTRMEM_P (init_type)
+              || NULLPTR_TYPE_P (init_type)
+              || null_node_p (elt_init));
+      if (POINTER_TYPE_P (elt_type) != init_is_ptr
        || !type_initializer_zero_p (elt_type, elt_init))
      last_nonzero = index;

Martin



Reply via email to